摘要
针对非负矩阵A和B的Hadamard积谱半径ρ(AoB)的下界估计问题,给出三个单调递增的收敛的下界序列.易于计算且能达到较紧的界.最后通过数值算例对理论结果进行验证,计算结果显示在某些情况下能达到真值.
For the lower bounds of the spectral radius ρ(A o B)of nonnegative matrices A and B,three monotone increasing and convergent sequences of lower bounds are obtained.The method can easily and tightly get the better bounds.Finally,numerical example has been given to verify the theoretical results and could reach the true value of the spectral radius in some case.
作者
刘徽
黄宽娜
LIU Hui;HUANG Kuan-na(College of Mathematics and Information Science,Leshan Normal University,Leshan 614000,China)
出处
《数学的实践与认识》
北大核心
2019年第18期188-192,共5页
Mathematics in Practice and Theory
基金
四川省教育厅资助科研项目“分数阶微积分理论及其应用研究”(16TD0029)