期刊文献+

超短脉冲激光与固体靶作用产生光核中子的数值模拟研究 被引量:1

Numerical Simulation of Photoneutron Generation in Ultra-Intense Short Laser-Solid Interactions
原文传递
导出
摘要 采用超短脉冲激光与固体靶作用产生光核中子的模型,使用蒙特卡罗程序Fluka研究了激光诱导光核中子源的特性。对不同材料和电子温度条件下中子产生的模拟表明,钨是最佳的靶材料,且对于不同的超热电子温度,存在不同的产额饱和厚度。对源尺寸的模拟表明,中子源的尺寸决定于入射电子束发散角和靶厚,可以通过增加靶半径的方式提升前向与侧向中子通量的比值至5。当电子温度大于4 MeV时,可以获得能谱结构稳定的光核中子源。对时间分布的模拟表明,中子源的脉宽小于30 ps,且飞行后的脉宽展宽系数为100 ps/mm。 The generation of photoneutrons in ultra-intense short laser-solid interactions is modeled, and the properties of the laser-induced photoneutron sources are studied using the Monte Carlo simulation code Fluka. Further, neutron generation is simulated for different materials and electron temperatures. The results denote that tungsten exhibits the optimal performance and that the neutron yield exhibits different saturation thickness values at different temperatures. The neutron source size can be determined using the electrons' spread angle and the target thickness. Ratios that are as high as 5 can be achieved between the fluxes in the forward and sideways directions by increasing the target radius. Further, stable energy spectra can be obtained for the photoneutron source when the electron temperature is greater than 4 MeV. The time distribution results denote that the neutron pulse duration is less than 30 ps and that its stretching factor after flight is 100 ps/mm.
作者 齐伟 贺书凯 闫永宏 周维民 谷渝秋 Qi Wei;He Shukai;Yan Yonghong;Zhou Weimin;Gu Yuqiu(Science and Technology on Plasma Physics Laboratory , Laser Fusion Research Center,China Academy of Engineering Physics , Mianyang , Sichuan 621900, China)
出处 《中国激光》 EI CAS CSCD 北大核心 2019年第9期43-50,共8页 Chinese Journal of Lasers
基金 科学挑战计划(TZ2018005) 国家重点研发计划(2016YFA0401100)
关键词 激光器 光核反应 激光电子加速 激光中子源 超短脉冲激光 蒙特卡罗模拟 lasers photonuclear reaction laser electron acceleration laser-induced neutron source ultra-intense short laser Monte Carlo simulation
  • 相关文献

参考文献4

二级参考文献34

  • 1蒯斌,邱爱慈,王亮平,林东生,丛培天,梁天学.强脉冲超硬X射线产生技术研究[J].强激光与粒子束,2005,17(11):1739-1743. 被引量:19
  • 2Nordell B, Brahme A. Phys. Med. Biol., 1984, 29(7): 797-810.
  • 3Summa W J, Gullickson R L, Hebert M P, et al. Advances in X-ray simulator technology[C]//10th IEEE International Pulsed Power Conference. 1995:1-12.
  • 4Cook D. Newdevelopments and applications of intense pulsed radition sources at Sandia National Laboratories[C]//11th IEEE International Pulsed Power Conference. 1997:25-36.
  • 5P Emma, R Akre, J Arthur, et al.. First lasing and operation of an fingstrom-wavelength free-electron laser [J]. Nature Photonics, 2010, 4(9): 641-647.
  • 6K Tiedtke, A Azima, N Bargen, et al.. The soft x-ray free electron laser FLASH at DESY: beamlines, diagnostics and end- stations[J]. NewJ Phys, 2009, 11(2): 023029.
  • 7C J Bocehetta. FERMI@Elettra Conceptual Design Report[M]. Trieste: Simcrotrone, 2007.
  • 8G Lambert, T Hara, T Tanikawa, et al.. The SCSS test accelerator free electron laser seeded by harmonics produced in gas[C]. UVX-Collogue Surles Sources Coherents at Incoherents UV, 2009. 85-91.
  • 9J B6dewadt, A Azima, F Curbis, et al.. sFLASH-First results of direct seeding at FLASHLJ]. Proceedings of FEL 2010, 2010.
  • 10Nuhn H O. IINAC Coherent Light Source (LCLS) Conceptual Design Report [R]. Stanford: Stanford Linear Accelerator Center, 2002.

共引文献21

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部