摘要
将适用于三维场景信息非对称采集和显示的赝像-正像转换(POC)算法应用于全息体视图打印,得到了采样平面与全息图平面的距离、采样间隔与全息单元尺寸比例不同时,采样图像和合成视差图像之间的像素匹配关系。分析了曝光光学系统参数和POC算法参数对体视图再现像视场角的影响,得到了场景深度和视场角之间的制约关系。实验通过在不同场景深度下三维物体的再现,验证了POC算法对全息体视图打印的适用性以及场景深度和视场角之间制约关系的正确性。实验结果表明,当场景深度较小时,再现像重影导致分辨率降低,并从理论上分析了全息体视图重影现象产生的原因。像素级精确的视差图像避免了数据误差对体视图再现质量的影响,对提高再现像分辨率有积极意义。
The pseudoscopic-orthoscopic conversion (POC) algorithm, which is applicable to asymmetrical capture and display of three-dimensional (3D) scene information, is utilized to perform the holographic stereogram printing. The matching relationship between pixels on the sampled image and the synthetic parallax image is obtained under different distances between the sampling plane and the holographic plane and different ratios of sampling interval to holographic unit size. The influences of exposure optical system parameters and POC algorithm parameters on the field of view of the stereogram are also analyzed, and the relationship between scene depth and field of view is obtained. The experimental results demonstrate the applicability of POC algorithm to holographic stereogram printing and the validity of the relationship between scene depth and field of view by reconstructing 3D objects at different scene depths. The resolution is reduced because of the reconstructed image ghosting when the depth of the scene is small, and reasons for the ghosting of the holographic stereogram are also explained. The accurate parallax image at the pixel level avoids the influence of data error on the quality of holographic stereogram, and has positive significance in improving the resolution of the reconstructed image.
作者
张腾
闫兴鹏
王晨卿
汪熙
陈颂
陈卓
蒋晓瑜
Zhang Teng;Yan Xingpeng;Wang Chenqing;Wang Xi;Chen Song;Chen Zhuo;Jiang Xiaoyu(Department of Information Com m unication , Academy of Army Armored Forces , Beijing 100072, China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2019年第9期248-257,共10页
Chinese Journal of Lasers
基金
国家重点研发计划(2017YFB1104500)
国家自然科学基金(61775240)
全国优秀博士论文作者专项资助(201432)
关键词
全息
全息体视图
赝像-正像转换
场景深度
视场角
holography
holographic stereogram
pseudoscopic-orthoscopic conversion
scene depth
field of view