摘要
Ultraviolet(UV) detectors with large photosensitive areas are more advantageous in low-level UV detection applications. In this Letter, high-performance 4 H-SiC p-i-n avalanche photodiodes(APDs) with large active area(800 μm diameter) are reported. With the optimized epitaxial structure and device fabrication process,a high multiplication gain of 1.4 × 10^6 is obtained for the devices at room temperature, and the dark current is as low as ~10 p A at low reverse voltages. In addition, record external quantum efficiency of 85.5% at 274 nm is achieved, which is the highest value for the reported Si C APDs. Furthermore, the rejection ratio of UV to visible light reaches about 10^4. The excellent performance of our devices indicates a tremendous improvement for largearea SiC APD-based UV detectors. Finally, the UV imaging performance of our fabricated 4 H-SiC p-i-n APDs is also demonstrated for system-level applications.
Ultraviolet(UV) detectors with large photosensitive areas are more advantageous in low-level UV detection applications. In this Letter, high-performance 4 H-SiC p-i-n avalanche photodiodes(APDs) with large active area(800 μm diameter) are reported. With the optimized epitaxial structure and device fabrication process,a high multiplication gain of 1.4 × 10~6 is obtained for the devices at room temperature, and the dark current is as low as ~10 p A at low reverse voltages. In addition, record external quantum efficiency of 85.5% at 274 nm is achieved, which is the highest value for the reported Si C APDs. Furthermore, the rejection ratio of UV to visible light reaches about 10~4. The excellent performance of our devices indicates a tremendous improvement for largearea SiC APD-based UV detectors. Finally, the UV imaging performance of our fabricated 4 H-SiC p-i-n APDs is also demonstrated for system-level applications.
基金
supported by the National Natural Science Foundation of China(Nos.61604137 and 61674130)