期刊文献+

基于卷积神经网络和RGB-D图像的车辆检测算法 被引量:18

Vehicle Detection Algorithm Based on Convolutional Neural Network and RGB-D Images
原文传递
导出
摘要 针对利用彩色图像进行车辆检测时会受到路面阴影、车辆反光和光线不足等复杂情况影响的问题,提出一种基于卷积神经网络并融合彩色与深度图像的车辆检测算法。设计单通道RG-D融合网络和双通道RGB-D融合网络两种改进模型,分别用于提高检测速度和准确度。实验使用GTA(Grand Theft Auto)车辆数据集对该算法进行测试,并与基于RGB图像的其他流行算法进行对比和分析,结果表明:与基于彩色图像的Yolo v2算法相比,利用双通道RGB-D融合网络检测的准确率和召回率分别提升5.69%和6.31%,利用单通道RG-D融合网络对单一图像的最快检测速度达到24ms。实验证明,基于RGB-D图像的改进网络模型能够实现实时检测,并有效提高车辆检测精度。 Aiming at the problem that using RGB images for vehicle detection are affected by complex conditions such as road shadow, vehicle reflection and insufficient light. The paper proposes a vehicle detection algorithm based on convolutional neural network and combination of RGB and depth images. Two improved models of single-channel RG-D and double-channel RGB-D fusion networks are designed to improve detection speed and accuracy respectively. The algorithm is tested with (Grand Theft Auto) vehicle dataset and compared with other popular algorithms based on RGB images. The results show that compared with Yolo v2 algorithm based on RGB images, detection accuracy and recall rates increase 5. 69% and 6. 31% respectively by double-channel RGB-D fusion network, and the fastest detection speed of single image reaches 24ms with single-channel RG-D fusion network. Experiments show that the improved network model based on RGB-D images can achieve real-time detection and effectively improve vehicle detection accuracy.
作者 王得成 陈向宁 赵峰 孙浩燃 Wang Decheng;Chen Xiangning;Zhao Feng;Sun Haoran(Graduate School, Space Engineering University, Beijing 101416, China;School of Space Information , Space Engineering University, Beijing 101416, China;61618 Troops, Beijing 100094, China;Jiuquan Satellite Launch Centre, Jiuquan, Gansu 730000, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第18期111-118,共8页 Laser & Optoelectronics Progress
基金 国防科技创新特区专项(18-H863-01-ZT-002-055)
关键词 图像处理 车辆检测 计算机视觉 卷积神经网络 RGB-D图像 image processing vehicle detection computer vision convolutional neural network RGB-D images
  • 相关文献

参考文献4

二级参考文献78

  • 1尹潘龙,徐光柱,雷帮军,曹维华.Kinect下深度信息获取技术及其在三维目标识别中的应用综述[J].集成技术,2013,2(6):94-99. 被引量:5
  • 2刘建国,开桂云,薛力芳,张春书,刘艳格,王志,郭宏雷,李燕,孙婷婷,袁树忠,董孝义.基于高非线性光子晶体光纤Sagnac环形镜的全光开关[J].物理学报,2007,56(2):941-945. 被引量:16
  • 3Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 4Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 5Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 6Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 7Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 8Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.
  • 9Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature, 1986,3231 533 538.
  • 10LeCun Y, Denker J S, Henderson D, et al. Handwritten digit recognition with a back-propagation network[C]//Advances in Neural Information Processing Systems. Colorado, USA Is. n. ], 1990: 396-404.

共引文献588

同被引文献131

引证文献18

二级引证文献171

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部