期刊文献+

ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME 被引量:4

ASYMPTOTIC PROPERTIES OF A BRANCHING RANDOM WALK WITH A RANDOM ENVIRONMENT IN TIME
下载PDF
导出
摘要 We consider a branching random walk in an independent and identically distributed random environment ξ=(ξn) indexed by the time. Let W be the limit of the martingale Wn=∫e^-txZn(dx)/Eξ∫e^-txZn(dx), with Zn denoting the counting measure of particles of generation n, and Eξ the conditional expectation given the environment ξ. We find necessary and sufficient conditions for the existence of quenched moments and weighted moments of W, when W is non-degenerate. We consider a branching random walk in an independent and identically distributed random environment ξ=(ξn) indexed by the time.Let W be the limit of the martingale Wn=∫e-txZn(dx)/Eξ∫e-txZn(dx),with Zn denoting the counting measure of particles of generation n,and Eξ the conditional expectation given the environment ξ.We find necessary and sufficient conditions for the existence of quenched moments and weighted moments of W,when W is non-degenerate.
作者 Yuejiao WANG Zaiming LIU Quansheng LIU Yingqiu LI 王月娇;刘再明;刘全升;李应求(College of Mathematics and Computational Science, Hunan First Normal University, Changsha 410205, China;School of Mathematics and Statistics, Central South University, Changsha 410083, China;LMBA, UMR CNRS 6205, Université de Bretagne-Sud, F-56000 Vannes, France;School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410004, China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2019年第5期1345-1362,共18页 数学物理学报(B辑英文版)
基金 benefited from the support of the French government Investissements d’Avenir program ANR-11-LABX-0020-01 partially supported by the National Natural Science Foundation of China(11571052,11401590,11731012 and 11671404) by Hunan Natural Science Foundation(2017JJ2271)
关键词 branching RANDOM WALK RANDOM ENVIRONMENT quenched MOMENTS WEIGHTED MOMENTS branching random walk random environment quenched moments weighted moments
分类号 O [理学]
  • 相关文献

参考文献2

二级参考文献19

  • 1Asmussen S, Kaplan N. Branching random walks I. Stochastic Processes Appl, 1976, 4(1): 1-13.
  • 2Athreya K B, Karlin S. On branching processes with random environments I. Extinction probabilities. Ann Math Statist, 1971, 42:1499-1520.
  • 3Athreya K B, Karlin S. On branching processes with random environments Ⅱ. Limit theorems. Ann Math Statist, 1971, 42:1843-1858.
  • 4Baillon J B, Clement Ph, Greven A, et al. A variational approach to branching random walk in random environment. Ann Probab, 1993, 21(1): 290-317.
  • 5Biggins J D. Martingale convergence in the branching random walk. J Appl Probability, 1977,14(1): 25 37.
  • 6Biggins J D. The central limit theorem for the supercritical branching random walk and related results. Stochastic Process Appl, 1990, 34(2): 255-274.
  • 7Biggins J D, Kyprianou A E. Measure change in multitype branching. Adv in Appl Probab, 2004, 36(2): 544-581.
  • 8Durrett R. Probability: theory and examples. 2nd ed. Belmont, CA: Duxbury Press, 1996.
  • 9Greven A, den Hollander F. Branching random walk in random environment: phase transitions for local and global growth rates. Probab. Theory Related Fields, 1992, 91(2): 195-249.
  • 10Harris T E. The theory of branching processes. Die Grundlehren der Mathematischen Wissenschaften, Bd. 119. Berlin: Springer-Verlag, 1963.

共引文献16

同被引文献4

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部