期刊文献+

改进的多分辨率点云自动配准算法 被引量:4

Improved Multi-resolution Point Cloud Automatic Registration Algorithm
下载PDF
导出
摘要 为解决三维点云配准精度低、速度较慢、易受噪声和外点干扰的问题,提出一种改进的多分辨率点云自动配准算法.算法首先对源点云和目标点云建立KD-tree以加快近邻点的搜索;然后采用基于法向量和特征直方图的配准方法实现粗配准,并对其中的特征提取部分进行了改进,能有效提取特征点,且不会损失大量特征不明显的点云信息.为了进一步提高配准精度,精配准提出一种改进的多分辨率迭代最近点算法,算法提出利用特征点的稠密度计算点云分辨率,同时对关键点采样方法进行了改进.实验结果表明,对于不同规模和含不同程度噪声的点云,此方法在精度、速度、抗噪性方面都得到了改善. In order to solve the problem of lowaccuracy,slow speed,noise and external point interference of 3 D point cloud registration,an improved multi-resolution point cloud automatic registration algorithm is proposed. The algorithm firstly establishes KD-tree for source point cloud and target point cloud to speed up the search of adjacent points. Then the registration method based on normal vector and feature histogram is used to achieve coarse registration,and the feature extraction part is improved. Feature points can be extracted efficiently without losing a lot of point cloud information with insignificant features. In order to further improve the registration accuracy,an improved multi-resolution iterative closest point algorithm is proposed. The algorithm proposes to calculate the point cloud resolution by using the density of the feature points,and improves the key point sampling method. The experimental results show that this method has improved accuracy,speed and noise resistance for point clouds of different scales and with different degrees of noise.
作者 王勇 黎春 何养明 陈荟西 WANG Yong;LI Chun;HE Yang-ming;CHEN Hui-xi(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2019年第10期2236-2240,共5页 Journal of Chinese Computer Systems
基金 重庆市巴南区技术合作项目([2016]33)资助 重庆理工大学研究生创新基金项目(ycx2018243)资助
关键词 点云配准 KD-TREE 多分辨率 迭代最近点 point cloud registration KD-tree multi-resolution iterative closest point
  • 相关文献

参考文献9

二级参考文献56

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:100
  • 2张学昌,习俊通,严隽琪.基于点云数据的复杂型面数字化检测技术研究[J].计算机集成制造系统,2005,11(5):727-731. 被引量:27
  • 3沈海平,达飞鹏,雷家勇.基于最小二乘法的点云数据拼接研究[J].中国图象图形学报,2005,10(9):1112-1116. 被引量:28
  • 4朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 5P J Besl, H D McKay. A method for registration of 3 D shapes [J]. 1EEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 6G C Sharp, S W Lee, D K Wehe. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1). 90-102.
  • 7S Rusinkiewicz, M Levoy. Efficient variants of the ICP algorithm [C]. Quebec City: Proceedings of the 3rd International conference on 3 D Digital Imaging and Modeling, 2001. 145-152.
  • 8J Jiang, J Cheng, X L Chen. Registration for 3-D point clouds using angular invariant feature[J]. Neuro Computing, 2009, 72 (16 18): 3839-3844.
  • 9C Basdogan, A C Oztireli. A new feature based method for robust and efficient rigid body registration of overlapping point clouds[J]. The Visual Computer, 2008, 24(7-9)~ 679-688.
  • 10J J Dai, J Yang. A novel two stage algorithm for accurate registration of 3-D point clouds [ C ]. 2011 International Conference on Multimedia Technology, 2011. 6187-6191.

共引文献206

同被引文献21

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部