摘要
在分类学习任务中,数据的类标记空间存在层次化结构,特征空间伴随着未知性和演化性.因此,文中提出面向大规模层次分类学习的在线流特征选择框架.定义面向层次化结构数据的邻域粗糙模型,基于特征相关性进行重要特征动态选择.最后,基于特征冗余性进行鉴别冗余动态特征.实验验证文中算法的有效性.
Label space of data possesses a hierarchical structure, and feature space is unknown and evolutionary in many classification learning tasks.An online streaming feature selection framework for large-scale hierarchical classification task is proposed.Firstly, a neighborhood rough model is defined for hierarchical structure data. Important features are dynamically selected based on feature correlation.Finally, the redundant dynamic features are identified based on feature redundancy.Experiments are conducted to verify the effectiveness of the proposed algorithm.
作者
白盛兴
林耀进
王晨曦
陈晟煜
BAI Shengxing;LIN Yaojin;WANG Chenxi;CHEN Shengyu(School of Computer Science and Engineering,Minnan Normal University,Zhangzhou 363000;Fujian Key Laboratory of Granular Computing and Application,Zhangzhou 363000)
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2019年第9期811-820,共10页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金项目(No.61672272)
福建省自然科学基金项目(No.2018J01548,2018J01547)
福建省教育厅科技项目(No.JT180318)资助~~
关键词
在线流特征选择
层次分类
邻域粗糙集
兄弟策略
Online Streaming Feature Selection
Hierarchical Classification
Neighborhood Rough Set
Sibling Strategy