期刊文献+

Investigation on heat-transfer-coefficient between aluminum alloy and organic/inorganic sand mold based on inverse method

Investigation on heat-transfer-coefficient between aluminum alloy and organic/inorganic sand mold based on inverse method
下载PDF
导出
摘要 A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients (HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature during the solidification process was recorded and input into the simulation software. The inverse model of MAGMA was used to calculate the HTC based on the actual temperature. Results show that the temperature of the inorganic sand mold increased faster than the organic sand mold;while the temperature of the casting part with the inorganic sand mold decreased faster. The optimal HTCs between Al and the organic/ inorganic sand mold are confirmed to be 300 to 700 and 1000 to 1800 W·m^-2·K^-1, respectively, along with the change of solid-liquid phase line. The simulated temperature curves show the same trend as the measured ones. The maximum deviation between the two temperature curves are 17.32℃ and 18.77℃ for castings by inorganic and organic sand molds. A kind of cylinder sand mold was designed to investigate the heat-transfer-coefficients(HTCs) between aluminum alloy and organic/inorganic binder bonded sand mold during the solidification processes. Temperature during the solidification process was recorded and input into the simulation software. The inverse model of MAGMA was used to calculate the HTC based on the actual temperature. Results show that the temperature of the inorganic sand mold increased faster than the organic sand mold; while the temperature of the casting part with the inorganic sand mold decreased faster. The optimal HTCs between Al and the organic/inorganic sand mold are confirmed to be 300 to 700 and 1000 to 1800 W·m-2·K-1, respectively, along with the change of solid-liquid phase line. The simulated temperature curves show the same trend as the measured ones. The maximum deviation between the two temperature curves are 17.32 °C and 18.77 °C for castings by inorganic and organic sand molds.
出处 《China Foundry》 SCIE 2019年第5期336-341,共6页 中国铸造(英文版)
关键词 heat-transfer-coefficient aluminum alloy organic INORGANIC INVERSE method heat-transfer-coefficient aluminum alloy organic inorganic inverse method
  • 相关文献

参考文献2

二级参考文献7

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部