摘要
针对慢性肾病在全球占比之高、病情发展不可逆转、病情极易出现恶化的特点,设计了慢性肾病辅助诊断系统;利用数据挖掘随机森林算法的分类功能对病人化验数据进行处理,判断病人是否患有慢性肾病;设计并开发了基于B/S的慢性肾病辅助诊断系统,该系统集慢性肾病辅助诊断、诊断信息查看、用户管理于一体;该系统用于给经验不足的医生提供诊断参考,助其提高诊断水平,降低误诊率,从而使慢性肾病患者尽早进行正确的治疗,避免病情治疗延误带来的严重后果。
Aiming at the high proportion of chronic kidney disease in the world,the irreversible development of the disease and the easy deterioration of the disease,an auxiliary diagnosis system for chronic kidney disease was designed.The classification function of random forest algorithm of data mining is used to process the patient's laboratory data to determine whether the patient has chronic kidney disease.A B/S-based assistant diagnosis system for chronic nephropathy is designed and developed.The system integrates assistant diagnosis,diagnosis information viewing and user management of chronic nephropathy.The system is used to provide diagnostic reference for inexperienced doctors,help them improve the level of diagnosis,reduce the rate of misdiagnosis,so that patients with chronic kidney disease can be treated correctly as soon as possible,and avoid the serious consequences of delayed treatment.
作者
宋波
宋同峰
Song Bo;Song Tongfeng(College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266000,China)
出处
《计算机测量与控制》
2019年第10期50-54,59,共6页
Computer Measurement &Control
基金
国家自然科学基金(61572268,61303193,61402246)
山东省重点研发计划项目(2017GSF18110,2018GGX101029)
关键词
慢性肾病
辅助诊断系统
数据挖掘
随机森林
B/S
chronic kidney disease
assistant diagnosis system
data mining
random forest
B/S