期刊文献+

基于小波、WAE和LSTM的压裂车故障诊断 被引量:4

Fracture Truck Fault Diagnosis Based on Wavelet,WAE and LSTM
下载PDF
导出
摘要 动力系统作为压裂车的关键部件,其工作状况直接影响着压裂车的性能,压裂车工况多变,使得其动力系统故障诊断更加复杂。为解决压裂车动力系统振动信号的强时变性和强噪声特性而造成其故障难以辨识的问题,提出了一个基于提升多小波包(LMWP)、小波自编码器(WAE)和长短时记忆网络(LSTM)方法。首先对压裂车动力端采集的振动信号进行3层提升多小波包分解;其次计算各子频带的相对能量,构成原始特征向量;最后将原始特征向量经WAE降维,并输入LSTM网络实现压裂车动力系统故障诊断。试验结果表明,提出的故障诊断方法在不同工况下能够实现99%以上的诊断准确率,具有优于传统方法较强的泛化能力、特征提取能力和识别能力。所得结论可为压裂车动力系统诊断方法的进一步发展提供参考。 As the key component of the fracturing truck,the power system directly affects the performance of the fracturing truck.The changing working conditions of the fracturing truck makes the fault diagnosis of the power system more complicated.To address the difficult fault diagnosis due to the strong time-varying and strong noise characteristics of the vibration signal of the fracturing truck power system,a method based on lifting multi-wavelet packet(LMWP),wavelet auto-encoder(Wavelet)and Long Short-term Memory(LSTM)methods are proposed.Firstly,the vibration signal acquired at the power end of the fracturing truck is subjected to 3-layer lifting multi-wavelet packet decomposition.Secondly,the relative energy of each sub-band is calculated to form the original feature vector.Finally,the original feature vector is dimensionality reduced by WAE and input into the LSTM network to realize fracture truck power system fault diagnosis.The experimental results show that the proposed method can achieve more than 99%diagnostic accuracy under different working conditions,and has better generalization ability,feature extraction ability and recognition ability than traditional methods.The study can provide references for the further development of the diagnostic method of the fracturing truck power system.
作者 杜小磊 陈志刚 许旭 钟新荣 Du Xiaolei;Chen Zhigang;Xu Xu;Zhong Xinrong(School of Mechanical-Electronic and Vehicle Engineering,Beijing University of Civil Engineering and Architecture;Beijing Engineering Research Center of Monitoring for Construction Safety;Changqing Downhole Service Company,CNPC Chuanqing Drilling Engineering Company Limited)
出处 《石油机械》 北大核心 2019年第10期88-93,106,共7页 China Petroleum Machinery
基金 国家自然科学基金项目“多电机激振非线性振动系统的谐振同步机理和稳定性控制”(51605022) 北京市教育委员会科技计划一般项目(SQKM201710016014) 北京市优秀人才培养资助项目(2013D005017000013) 北京市属高校基本科研业务费专项资金资助项目(X18217)
关键词 压裂车 故障诊断 提升多小波包 长短时记忆网络 小波自编码器 fracturing truck fault diagnosis lifting multi-wavelet packet long short term memory network wavelet auto-encoder
  • 相关文献

参考文献12

二级参考文献94

共引文献172

同被引文献61

引证文献4

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部