摘要
针对基于BP神经网络的光伏最大功率点跟踪(MPPT)控制存在的问题,提出了一种适用于光伏发电系统的改进型神经网络MPPT控制器。首先对太阳能光伏发电系统中的电池工作原理及其等效电路进行了分析。然后采用BP神经网络和模糊控制相结合对来实现光伏MPPT控制。此外,采用自适应参数对模糊控制器进行了改进。最后,基于BOOST转换电路建构建了光伏电池的matlab/simulink仿真模型。实验结果显示:提出的最大功率点跟踪控制器具有较高的准确性和反应速度,且稳定性较好。
Aiming at the problems of photovoltaic power point tracking (MPPT) control based on BP neural network, an improved neural network MPPT controller for photovoltaic power generation system is proposed. Firstly, the working principle and equivalent circuit of the battery in the solar photovoltaic power generation system are analyzed. Then, the combination of BP neural network and fuzzy control is used to realize photovoltaic MPPT control. In addition, the fuzzy controller is improved with adaptive parameters. Finally, based on the BOOST conversion circuit, the matlab/simulink simulation model of the photovoltaic cell was established. The experimental results show that the proposed maximum power point tracking controller has higher accuracy and response speed, and the stability is better.
作者
彭访
周香
宫海晓
Fang PENG;Xiang ZHOU;Hai-xiao GONG(School of Electronic Information, Hunan Institute of Information Technology, Changsha 410151, China;School of Business, Hunan Institute of Information Technology, Changsha 410151, China;School of Data Science & Software Engineering,Wuzhou University, Wuzhou 543002, China)
出处
《机床与液压》
北大核心
2019年第18期132-137,共6页
Machine Tool & Hydraulics
基金
General scientific research project of education department of hunan province(17C1112)~~
关键词
光伏发电
控制器
最大功率点跟踪
模糊控制神经网络
Photovoltaic power generation
Controller
Maximum power point tracking
Fuzzy control
Neural network