期刊文献+

基于非线性梁理论的有限质点法 被引量:3

Finite particle method based on nonlinear beam theory
下载PDF
导出
摘要 有限质点法是以向量式力学为基础,用有限数量的质点来模拟结构的变形行为,质点的运动由牛顿运动定律来计算。在有限质点法中,质点通过构件相连,构件约束着质点的运动,并且其内力由质点的运动变量来描述。基于向量式力学的基本思想和非线性梁理论,提出了一种新的有限质点法,该方法在共旋单元坐标系中描述梁的非线性变形。以空间梁系结构为例,推导了计算构件内力的非线性公式,并考虑了弯扭耦合变形。通过两个连续欧拉角的变换公式得到共旋坐标系的旋转矩阵。与传统的有限质点法相比,本文提出的方法避免了刚体虚转动分析。通过四个结构的数值求解,验证了本文方法在计算结构大变形响应时具有较高的精度。 The finite particle method (FPM) is based on vector mechanics.In this method,a finite number of particles calculated by Newton's law of motion are used to simulate the deformation behavior of structures.In FPM,the particles are connected by the components,which restrict the motion of the particles,and the internal force of the component is described by the motion variables of the particles.Based on the basic idea of vector mechanics and nonlinear beam theory,a novel FPM is proposed in this paper.In this method,the nonlinear deformation of the beam is described in the co-rotational element coordinate system.Taking the spatial beam structures as an example,the nonlinear formulas of calculating the internal force of the component are derived,and the bending and twist coupling deformation is considered.The rotation matrix of co-rotational element coordinate system is obtained by the transformation formula of two successive Euler angles.Compared with the traditional FPM,the proposed method avoids the analysis of rigid body virtual rotation.Numerical solutions are presented for four structures,which indicate that the presented FPM algorithm is highly accurate in predicting large deformation responses of structures.
作者 黄正 刘石 杨毅 高庆水 张楚 田丰 HUANG Zheng;LIU Shi;YANG Yi;GAO Qing-shui;ZHANG Chu;TIAN Feng(Electric Power Research Institute of Guangdong Power Grid Co.,Ltd.,Guangzhou 510080,China;Guangdong Diankeyuan Energy Technology Co.,Ltd.,Guangzhou 510080,China)
出处 《计算力学学报》 EI CAS CSCD 北大核心 2019年第5期610-617,共8页 Chinese Journal of Computational Mechanics
基金 南方电网科技(GDKJQQ20153007)资助项目
关键词 有限质点法 向量力学 非线性梁理论 空间梁系结构 几何非线性 静力分析 finite particle method vector mechanics nonlinear beam theory spatial beam structures geometric nonlinear static analysis
  • 相关文献

参考文献6

二级参考文献43

  • 1金伟良,方韬.钢筋混凝土框架结构破坏性能的离散单元法模拟[J].工程力学,2005,22(4):67-73. 被引量:13
  • 2Riks E. An increment approach to the solution of snapping and buckling problems [J]. International Journal of Solids Structures, 1979, 15(5): 529--551.
  • 3Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal of Numerical Methods in Engineering, 1983, 19(2): 1269-- 1289.
  • 4Pellegrino S. Structural computation with the singular value decomposition of the equilibrium [J]. International Journal of Solids Structures, 1993, 30(21): 3025 -- 3035.
  • 5Luo Yaozhi, Lu Jinyu, Geometrically non-linear force method for assemblies with infinitesimal mechanisms [J]. Computers & Structures, 2006, 84(31-32): 2194--2199.
  • 6Lu Jinyu, Luo Yaozhi. Pre- and post-buckling analysis of structures by geometrically nonlinear force method [C]. The 3rd International Conference on Steel and Composite Structures. Mancheste: Taylor & Francis, 2007.
  • 7Ting E C, Shih C, Wang Y K. Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane flame element [J]. Journal of Mechanics, 2004, 20(2): 113-- 122.
  • 8Wu T Y, Wang R Z, Wang C Y. Large deflection analysis of flexible planar frames [J]. Journal of the Chinese Institute of Engineers, 2006, 29(4): 593 -- 606.
  • 9Wang R Z, Chuang C C, Wu T Y, Wang C Y. Vector form analysis of space truss structure in large elastic-plastic deformation [J]. Journal of the Chinese Institute of Civil Hydraulic Engineering, 2005, 17(4): 633--646.
  • 10Wang C Y, Wang R Z, Tai K C. Numerical simulation of the progressive failure and collapse of structure under seismic and impact loading [C]. 4th International Conference on Earthquake Engineering. Taipei: NCREE, 2006.

共引文献79

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部