期刊文献+

基于多任务联合稀疏表示的高光谱图像分类算法 被引量:4

Joint sparse representation and multitask learning for hyperspectral lmage clasification
下载PDF
导出
摘要 为了充分提取高光谱图像丰富的光谱信息,尽可能降低光谱冗余,同时保留较多有效判别信息.基于高光谱图像单波段的谱间相似性,提出了基于多任务学习和稀疏表示的分类算法.该方法将光谱间的冗余特性转化为有效信息加以利用,使用波段交叉分组策略构建子任务,并引入稀疏表示模型将所有分类任务进行联合表示,最终根据所有任务的累积残差确定测试样本的类别.实验对比分析了多任务联合表示分类和单任务分类的准确率.结果表明,基于多任务联合稀疏表示模型的分类性能优于单任务模型. Hyperspectral images have abundant spectral information,and thus the adjacent single-band images usually contain similar and redundant information.To simultaneously reducing spectral redundancy and retaining more effective discriminant information,a novel classification algorithm based on multitask learning and sparse representation is proposed in this paper.In this method,the spectral redundancy is transformed into effective information and a band cross-grouping strategy is used to construct sub-tasks.Sparse representation model is introduced to jointly represent all classification tasks.Finally,the test samples are classified according to the cumulative residual of all tasks.An experiment is performed between multitask learning and the single task learning.The experimental results show that the classification performance of the former is better than the later.
作者 贾立丽 张升伟 何杰颖 李娜 JIA Li-li;ZHANG Sheng-wei;HE Jie-ying;LI Na(Key Laboratory of Microwave Remote Sensing Technology,Chinese Academy of Science,Beijing 100190,China;National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《微电子学与计算机》 北大核心 2019年第10期15-20,共6页 Microelectronics & Computer
基金 中国科学院青年促进会基金资助(2016136)
关键词 多任务学习 稀疏表示 高光谱图像 图像分类 multitask learning sparse representation hyperspectral images image classification
  • 相关文献

参考文献2

二级参考文献65

  • 1李晶晶,王爱民,杨红卫.基于形状特征的大米虫蚀粒检测方法[J].农机化研究,2012,34(8):18-21. 被引量:4
  • 2王玉磊,赵春晖,齐滨.基于光谱相似度量的高光谱图像异常检测算法[J].吉林大学学报(工学版),2013,43(S1):148-153. 被引量:4
  • 3姜淑华,孙海波.计算机图像技术在农业工程中的应用[J].农机化研究,2006,28(11):177-178. 被引量:8
  • 4TITS L, SOMERS B, COPPIN P. The potential and limitations of a clustering approach for the improved ef- ficiency of multiple endmember spectral mixture analy- sis in plant production system monitoring [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6): 2273-2286.
  • 5MURPHY R J, MONTEIRO S T, SCHNEIDER S. Evaluating classification techniques for mapping vertical geology using field-based hyperspectral sensors [ J ]. IEEE Transactions on Geoseience and Remote Sensing, 2012, 50(6) : 3066-3080.
  • 6EISMANN M T, STOCKER A D, NASERBADI N M. Automated hyperspectral cueing for civilian search and rescue[ J ]. Proceedings of the IEEE, 2009, 97 (6) : 1031-1055.
  • 7EISMANN T M, STOCKER D A, NASRABADI N. Au- tomated hyperspectral cueing for civilian search and res- cue[J]. Proceeding of the IEEE, 2009, 97(6) : 1031- 1055.
  • 8MANOLAKIS D, SBAW G. Detection algorithm for hy- perspectral imaging applications [ J ]. IEEE Signal Pro- cessing Magazine, 19 : 29-43.
  • 9GOETZ A, VANE G. Imaging spectrometry of earth re- mote sensing[J]. Science, 1985,228: 1147-1153.
  • 10STEIN D W J, BEAVEN S G, HOFF L E, et al. Anomaly detection from hyperspectral imagery [ J ]. IEEE Signal Processing Magazine, 2002(19) : 58-69.

共引文献38

同被引文献23

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部