摘要
为解决无人艇(unmannedsurfacevessel,USV)的操纵性预报问题,提出一种基于无迹卡尔曼滤波(UnscentedKalmanFilter,UKF)的辨识方法用于获取无人艇二阶非线性操纵响应模型参数.首先在Matlab平台上进行20°Z形仿真操纵实验,基于差分法对辨识模型离散化,运用设计的UKF算法展开辨识,并分析其辨识过程中的收敛性,将辨识结果在实验室平台上进行10°,20°和30°半物理仿真正弦和Z形操纵性实验.结果表明,UKF是一种有效的辨识算法,辨识结果能有效的预报无人艇的操纵性预报.
In order to solve the maneuverability prediction problem of unmanned surface vessel (USV), an identification method based on Unscented Kalman Filter (UKF) was proposed to obtain the second-order nonlinear maneuvering response model parameters of unmanned craft. The 20° zigzag simulation manipulation experiment was carried out on the Matlab platform. The identification model was discretized based on the difference method. Then the designed UKF algorithm was used to identify and analyze the convergence in the identification process. Finally, the sine and zigzag maneuverability experiments of 10°, 20° and 30° semi-physical simulations were carried out based on the identification results. The results show that UKF is an effective identification algorithm, and the identification results can effectively predict the maneuverability prediction of unmanned surface vessel.
作者
褚式新
茅云生
董早鹏
杨鑫
黄铖
CHU Shixin;MAO Yunsheng;DONG Zaopeng;YANG Xin;HUANG Cheng(School of Transportation, Wuhan University of Technology, Wuhan 430063, China;Wuchang Shipbuilding Industry Group Co. Ltd., Wuhan 430060, China)
出处
《武汉理工大学学报(交通科学与工程版)》
2019年第5期947-950,956,共5页
Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金
国家自然科学基金项目(51709214,51779052,51809203,51879210)
中国博士后科学基金面上项目(2018M642939)
哈尔滨工程大学水下机器人技术重点实验室稳定支持课(SXJQR2018WDKT001)
武汉理工大学高性能船舶技术教育部重点实验室开放基金课题(gxnc18041404)
中央高校基本科研业务费专项资金资助(2017IVA006,2018IVB069,2019IVA088)资助
关键词
无人艇
操纵响应模型
参数辨识
无迹卡尔曼滤波
Unmanned Surface Vessel
maneuvering response model
parameter identification
Unscented Kalman Filter