期刊文献+

矿井通风网络的反向增强型烟花算法优化研究 被引量:4

Research on opposition-based enhanced fireworks algorithm optimization for mine ventilation network
下载PDF
导出
摘要 建立了以通风网络总能耗最小为目标的矿井通风网络非线性无约束优化模型。为提高该模型的优化能力和收敛速度,提出了一种反向增强型烟花算法。首先采用均匀反向初始化种群策略,将生成的均匀分布的随机种群和反向种群共同竞争,选择最优初始种群作为后续搜索的起始点;然后精细化控制烟花爆炸半径,使不同世代烟花种群的爆炸半径呈非线性递减,同代种群的爆炸半径由自身适应度值协调分配,并设定最小动态阈值以减少搜索资源浪费;最后采用精英反向学习选择策略,加强对精英烟花所在空间邻域的搜索,提高算法的全局勘测能力。实验结果表明,采用该算法对矿井通风网络进行优化后,在满足实际通风网络调节限制及用风需求基础上,总能耗可降低约23.2%,优化效果优于粒子群优化算法和增强型烟花算法。 A non-linear unrestraint optimization model of mine ventilation network was established which took the minimum total energy consumption of mine ventilation network as optimization objective.In order to improve optimization ability and convergence speed of the model,an opposition-based enhanced fireworks algorithm(OBEFWA) was proposed.Firstly,population initialization strategy based on opposition-based learning and uniform randomization is adopted,and uniform randomization population generated by the strategy is competed with opposition-based population,so that the optimal initial population is selected as starting point of subsequent search.Secondly,fireworks explosion radius is finely controlled,so that explosion radius of fireworks populations of different generations shows non-linear decline,and that of the same population generation is coordinated and distriblted according to their own fitness values.The minimum dynamic threshold is set to decrease waste of search resources.Finally,selection strategy of elite opposition-based learning is adopted to strengthen search for neighborhood of elite fireworks,so as to improve global exploration ability of the algorithm.The experimental results show that total energy consumption of mine ventilation network optimized by OBEFWA decreases about 23.2% which meets adjustment constraints and wind demand of actual ventilation network,and OBEFWA has better optimization effect than particle swarm optimization algorithm and enhanced fireworks algorithm.
作者 吴新忠 胡建豪 魏连江 钱晓喻 任子晖 张芝超 WU Xinzhong;HU Jianhao;WEI Lianjiang;QIAN Xiaoyu;REN Zihui;ZHANG Zhichao(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China;School of Safety Engineering,China University of Mining and Technology,Xuzhou 221116,China)
出处 《工矿自动化》 北大核心 2019年第10期17-22,67,共7页 Journal Of Mine Automation
基金 国家重点研发计划资助项目(2018YFC0808100) 江苏省重点研发计划资助项目(BE2016046)
关键词 矿井通风 通风网络优化 烟花算法 反向增强型烟花算法 反向学习 爆炸半径精细化控制 mine ventilation ventilation network optimization fireworks algorithm opposition-based enhanced fireworks algorithm opposition-based learning fine control of explosion radius
  • 相关文献

参考文献12

二级参考文献110

共引文献310

同被引文献49

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部