期刊文献+

基于大数据结构方程模型及分位数回归的用户需求响应分析 被引量:7

User’s demand response analysis based on big data structure equation model and quantile regression
下载PDF
导出
摘要 研究用户用电行为是电力公司把握市场动态、提供差异化服务的基础。传统的用电行为分析大多基于用户电表信息制定电价及需求响应机制,对用户的基本信息及反馈意见等缺乏深度挖掘,该文提出一种基于多维用户信息的用户需求响应电量分析方法,针对用户数据规模大、维度高的特点,采用均值处理压缩数据规模;通过Kendall系数及结构方程模型分别对用户需求响应电量与用户的基本信息进行相关性分析,分别得到用户需求响应关联因素的直接影响路径及结构影响路径;基于此,利用分位数回归模型对新增用户的需求响应电量进行概率预测。算例分析表明:用户的需求响应电量与基本信息之间存在结构影响路径;通过对用户需求响应电量的概率预测,能较好地把握用户需求响应电量的分布,为电力公司制定需求响应机制及精细化服务提供指导。 Studying the behavior of uses is the basis to grasp market dynamics and provide customized services for power companies. Traditional analysis for residential consumption mainly focuses on formulating tariff and demand response mechanism based on smart meters information, lack of deep mining of basic information and feedback of users. This paper proposes an analytical method for the user demand response based on multi-dimensional residential user information. Considering the large scale and high dimension of user data, the mean value method is used to compress the data scale. The Kendall coefficients and Structure Equation Model(SEM) are used to analyze the correlation between the user demand response power and user’s basic information, and the direct affecting path and structural path of the residential user demand response related factors are obtained respectively. Then, the quantile regression model is used to predict the potential demand response of new users. Case study shows that there exists structural influence path between the user demand response power and basic information. By predicting the probability of for the user demand response, the user demand response power distribution can be well captured to provide guidance for power companies to develop demand response mechanism and refined services.
作者 李峰 陈松波 顾洁 时亚军 金之俭 彭虹桥 LI Feng;CHEN Song-bo;GU Jie;SHI Ya-jun;JIN Zhi-jian;PENG Hong-qiao(Plan Development Department, China Southern Power Grid Guangdong Power Grid Company, Guangzhou 510600, China;Department of Electrical Engineering, Research Center for Big Data Engineering and Technologies, Shanghai JiaoTong University, Shanghai 200240, China)
出处 《电力科学与技术学报》 CAS 北大核心 2019年第3期120-128,共9页 Journal of Electric Power Science And Technology
基金 国家重点基础研究发展计划(2016YFB0900101)
关键词 用户需求响应电量分析 结构方程模型 分位数回归 Kendall相关系数 结构影响路径 概率预测 user’s demand response analysis structure equation modeling quantile regression Kendall coefficients structural affecting path probabilistic prediction
  • 相关文献

参考文献4

二级参考文献34

共引文献173

同被引文献114

引证文献7

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部