期刊文献+

基于动态进化算法的多阶段备件供应优化决策 被引量:5

Multi-stage spare parts supply optimization based on dynamic evolutionary algorithm
下载PDF
导出
摘要 由于实际备件保障工作中备件需求以间歇性需求为主,备件供应通常为多阶段的动态优化。针对以上问题,构建了多阶段备件供应数学模型。为求解动态优化模型,提出了一种元启发式动态进化算法。首先,在经典差分进化算法中增加了环境变化检测算子和环境变化响应策略,使得差分进化算法能够解决环境变化的动态优化问题。其次,提出了自适应莱维飞行策略,使得算法在环境发生变化时仍能保持良好的全局搜索能力和局部寻优能力。算例表明,所提出的动态自适应差分算法能够求得模型的最优可行解,且算法的分布性和收敛性均得到了很大的提升。 Since the spare parts demand is almost the intermittent demand in real spare parts support,the supply of spare parts is usually a multi-stage dynamic optimization problem.Focusing on this,a multi-stage mathematical model of spare parts supply is constructed.In order to solve this kind of dynamic optimization problem,a meta-heuristic dynamic optimization algorithm is proposed.Firstly,an environment change detector and an environment change response strategy are added to the classical differential evolution algorithm,which enables the differential evolution algorithm to solve the dynamic optimization problem when the environment changes.Secondly,a self-adaptive Levy flight strategy is proposed,which enables the algorithm to maintain a good global exploration and local exploitation capability when the environment changes.Empirical test shows that the proposed dynamic self-adaptive difference algorithm can obtain the optimal feasible solution of the model,and the distribution and convergence of the algorithm are greatly improved.
作者 王亚东 石全 张芳 尤志锋 夏伟 WANG Yadong;SHI Quan;ZHANG Fang;YOU Zhifeng;XIA Wei(Department of Equipment Command and Management,Shijiazhuang Campus,Army Engineering University,Shijiazhuang 050003,China;Research Center for Scientific and Technological Innovation,Unit 32178 of the PLA,Beijing 100012,China;Department of MechanizedInfantry,Shijiazhuang Campus,the Army Infantry Academy of PLA,Shijiazhuang 050003,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2019年第11期2514-2523,共10页 Systems Engineering and Electronics
基金 武器装备“十三五”预先研究共用技术项目(41404050501) 军内科研重点项目(KYSZJWJK1742)资助课题
关键词 备件供应 动态优化 差分进化 莱维飞行 自适应 spare parts supply dynamic optimization differential evolutionary algorithm Levy flight self-adaptive
分类号 E91 [军事]
  • 相关文献

参考文献6

二级参考文献61

  • 1赵建忠,徐廷学,刘勇,尹延涛.基于粗糙集和熵权以及改进支持向量机的导弹备件消耗预测[J].兵工学报,2012,33(10):1258-1265. 被引量:12
  • 2王铁虎,焦爱泉,冯连仲,张茂林.精确打击作战与装甲装备未来发展[J].兵工学报,2010,31(S2):59-65. 被引量:5
  • 3杨秉喜,李金国,张义芳,等.GJB4355-2002备件供应规划要求[S].中国人民解放军总装备部批准,2002.
  • 4Shtub A,Simon M.Determination of reorder points for spare parts in a two-echelon inventory systeml the case of non-identical maintenance facilities[J].European Journal of Operational Research,1994,73(3):458-464.
  • 5Axsater S.Simple solution procedures for a class of two-echelon inventory problems[J].Operations Research,1990,38:64-69.
  • 6Gajpal P,Ganesh L,Rajendran C.Criticality analysis of spare parts using the analytic hierarchy process[J].International Journal of Production Economics,1994,35:293-298.
  • 7C Ronnewinkel,C O Wilke,T Marrtinetz.Genetic algorithms in time-dependent environments[ A ].L Kallel,B Naudts,A Rogers,et al.In Theoretical Aspects of Evolutionary Computing[C].Berlin:Springer-Verlag,2000.263-288.
  • 8Marco Farina,K Deb,Paolo Amato.Dynamic multi-objective optimization problems:Test cases,approximations,and applications[ J ].IEEE Transactions on Evolutionary Computation,2004,8(5):425-442.
  • 9T Back.Evolutionary Algorithms in Theory and Practice[ M].New York:Oxford University Press,1996.125-127.
  • 10D A.Van Veldhuizen.Multi-objective evolutionary algorithms:classifications,analysis,and new innovation[ D ].Elec Comput Eng,Air Force Institute of Technology,Wright-Patterson AFB,Dayton,OH,1999.

共引文献72

同被引文献68

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部