摘要
研究随机小扰动下稳定流形的逼近.在一定条件下证明,当小参数ε→0+时,受加性噪声驱动的随机发展方程的稳定流形几乎处处收敛到确定系统的稳定流形.
The approximations of stable manifolds under small random perturbations are put under examination. It is proven that under certain conditions, as small parameter ε approximates zero, stable manifolds of the stochastic evolution equation driven by additive noise converge almost surely for sure to those of the deterministic system.
作者
申俊
SHEN Jun(College of Mathematics,Sichuan University,Chengdu,Sichuan 610064,China)
出处
《内江师范学院学报》
2019年第10期32-34,80,共4页
Journal of Neijiang Normal University
基金
中央高校基本科研业务费专项资金资助(YJ201646)
关键词
布朗运动
小扰动
稳定流形
收敛
Brownian motion
small perturbations
stable manifolds
convergence