摘要
准确估算森林碳密度是研究森林生态系统的核心。基于Matlab工作平台,以森林资源连续清查(湖南省第七次复查)及同期Landsat 8影像为本底,建立非线性回归模型、RF随机森林模型和RBF径向基神经网络模型进行森林碳密度反演。结果表明:RBF神经网络精度最高,决定系数为0.96,均方根误差为1.33 t·hm^-2,很好的拟合了样地实测碳密度;RF随机森林优于非线性回归模型,拟合精度、均方根误差分别为0.91、2.50 t·hm^-2;非线性回归模型精度最低,决定系数和均方根误差分别为:0.62、3.87 t·hm^-2。故应用RBF神经网络对森林碳密度的反演具有很好的效果。
Accurate estimation of forest carbon density is the research core on forest ecosystems. Based on the Matlab work platform, and the forest resources were continuously inspected of ‘The seventh reexamination of Hunan province’ and the Landsat 8 image was used as the corresponding period as the copy, to establish the nonlinear regression model, RF random forest model and RBF radial basis neural network model for the purpose of forest carbon density inversion. The results show that: the RBF neural network has the highest accuracy, and the determination coefficient is 0.96, and the root mean square error is 1.33 t·hm^-2. It matches the measured carbon density sample beautifully. The RF random forest superior to non-linear regression model which are 0.91 and 2.50 t·hm^-2 respectively. The nonlinear regression model has the lowest accuracy, and the determination coefficient and the root mean square error are 0.62 and 3.87 t·hm^-2 respectively. Therefore, the application of RBF neural network to the inversion of forest carbon density has a good effect.
作者
吴炳伦
石军南
胡觉
梅浩
WU Binglun;SHI Junnan;HU Jue;MEI Hao(Central South University of Forestry and Technology,Changsha 410004,Hunan,China;Central South Forest Inventory Planning Institute of State Forestry Administration,Changsha 410004,Hunan,China)
出处
《中南林业科技大学学报》
CAS
CSCD
北大核心
2019年第11期42-47,共6页
Journal of Central South University of Forestry & Technology
基金
国家林业公益性行业专项“林业资源多层次信息服务技术研究”(201304215)
关键词
森林碳密度
非线性回归
随机森林
RBF
估计
forest carbon density
nonlinear regression
random forest
RBF
estimation