期刊文献+

基于单一神经网络的实时人脸检测 被引量:3

Real-Time Face Detection Based on Single Neural Network
下载PDF
导出
摘要 由于人脸尺度多样性使得人脸检测算法在CPU上运行速度受限,提出了一种新的基于单一神经网络的实时人脸检测算法。首先在网络初始卷积层和池化层中设置较大的卷积核尺寸和步长,缩小输入图像尺寸利于实时检测;然后网络将浅层特征图和深层特征图相融合,增强上下文联系和减少重复检测;最后在多个卷积层上预测人脸位置,利用预测框重叠策略,实现多尺度的人脸检测来提升图像中小尺寸人脸的检测精度。在人脸检测数据集基准和野外标注人脸数据集上测试实验结果表明,本文算法模型精度能够达到92.1%和95.4%。与此同时,本文算法在CPU上实现21帧/s的检测速度。 To improve the limited speed of face detection algorithm on central processing unit (CPU)caused by the diversity of the facescales,we proposed a real-time face detection method based on a single neural network. Firstly, a large convolution kernel and step size were used in the initial convolution and pooling layers, which were able to reduce the size of input images. Then, the shallow and deep feature maps were merged to enhance the context-connection and reduce repeated boxes. Finally, we predicted the face location based on the output of different convolution layers. By using the strategy of overlapping prediction boxes, our method is able to improve the detection accuracy of the smaller size face of input images. Experimental results on face detection dataset and benchmark and annotated face dataset in the wild achieve accuracies of 92% and 95.4%, respectively. Above all, our face detection technique can achieve a high detection speed of 21 frames per second on CPU, which can satisfy real-time detection requirements.
作者 熊寒颖 鲁统伟 闵峰 蒋冲宇 XIONG Hanying;LU Tongwei;MIN Feng;JIANG Chongyu(School of Computer Science and Engineering,Wuhan Institute of Technology,Wuhan 430205,China)
出处 《武汉工程大学学报》 CAS 2019年第5期489-493,共5页 Journal of Wuhan Institute of Technology
基金 武汉工程大学第十届研究生教育创新基金(CX2018193)
关键词 卷积神经网络 多尺度人脸检测 特征图融合 CPU convolution neural network multi-scaleface detection feature map fusion CPU
  • 相关文献

参考文献6

二级参考文献36

  • 1陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 2YANG J,LU W,WAIBEL A.Skin-color modeling and adaptation[C]// Third Asian Conference on Computer Vision.London:Springer-Verlag,1998:687-694.
  • 3KAKUMANU P,MAKROGIANNIS S,BOURBAKIS N.A survey of skin-color modeling and detection methods[J].Pattern Recognition,2007,40(3):1106-1122.
  • 4VIOLA P,JONES M.Rapid object detection using a boosted cascode of simple features[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington,DC:IEEE Computer Society,2001:511-518.
  • 5LIENHART R,MAYDT J.An extended set of haar-like features for rapid object detection[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2002:900-903.
  • 6JONES M,VIOLA P.Fast multi-view face detection[EB/OL].[2009-02-16].http://www.merl.com/reports/docs/TR2003-96.pdf.
  • 7YANG J,WAIBEL A.Real-time face tracker[C]// Proceedings of the 3rd IEEE Workshop on Applications of Computer Vision.Washington,DC:IEEE Computer Society,1996:142-147.
  • 8HSU R L,ABDEL-MOTTALEB M,JAIN A K.Face detection in color images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):696-706.
  • 9FREUND Y,SCHAPIRE R E.A decision-theoretic generalization of online learning and an application to boosting[C]// Proceedings of the Second European Conference on Computational Learning Theory.London:Springer-Verlag,1995:23-37.
  • 10YANG M H,KRIEGMAN D Jo AHUJA N.Detecting faces in images:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):34-58.

共引文献45

同被引文献19

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部