期刊文献+

Dynamic changes of root proteome reveal diverse responsive proteins in maize subjected to cadmium stress

Dynamic changes of root proteome reveal diverse responsive proteins in maize subjected to cadmium stress
下载PDF
导出
摘要 Toxic symptoms and tolerance mechanisms of heavy metal in maize are well documented. However, limited information is available regarding the changes in the proteome of maize seedling roots in response to cadmium(Cd) stress. Here, we employed an i TRAQ-based quantitative proteomic approach to characterize the dynamic alterations in the root proteome during early developmental in maize seedling. We conducted our proteomic experiments in three-day seedling subjected to Cd stress, using roots in four time points. We identified a total of 733, 307, 499, and 576 differentially abundant proteins after 12, 24, 48, or 72 h of treatment, respectively. These proteins displayed different functions, such as ribosomal synthesis, reactive oxygen species homeostasis, cell wall organization, cellular metabolism, and carbohydrate and energy metabolism. Of the 166 and 177 proteins with higher and lower abundance identified in at least two time points, 14 were common for three time points. We selected nine proteins to verify their expression using quantitative real-time PCR. Proteins involved in the ribosome pathway were especially responsive to Cd stress. Functional characterization of the proteins and the pathways identified in this study could help our understanding of the complicated molecular mechanism involved in Cd stress responses and create a list of candidate gene responsible for Cd tolerance in maize seeding roots. Toxic symptoms and tolerance mechanisms of heavy metal in maize are well documented. However, limited information is available regarding the changes in the proteome of maize seedling roots in response to cadmium(Cd) stress. Here, we employed an i TRAQ-based quantitative proteomic approach to characterize the dynamic alterations in the root proteome during early developmental in maize seedling. We conducted our proteomic experiments in three-day seedling subjected to Cd stress, using roots in four time points. We identified a total of 733, 307, 499, and 576 differentially abundant proteins after 12, 24, 48, or 72 h of treatment, respectively. These proteins displayed different functions, such as ribosomal synthesis, reactive oxygen species homeostasis, cell wall organization, cellular metabolism, and carbohydrate and energy metabolism. Of the 166 and 177 proteins with higher and lower abundance identified in at least two time points, 14 were common for three time points. We selected nine proteins to verify their expression using quantitative real-time PCR. Proteins involved in the ribosome pathway were especially responsive to Cd stress. Functional characterization of the proteins and the pathways identified in this study could help our understanding of the complicated molecular mechanism involved in Cd stress responses and create a list of candidate gene responsible for Cd tolerance in maize seeding roots.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第10期2193-2204,共12页 农业科学学报(英文版)
基金 supported by the Foundation for Young Scientist of Beijing Academy of Agriculture & Forestry Sciences, China (QNJJ201505) the National Key Research and Development Program of China (SQ2016ZY03002163)
关键词 cadmium stress ITRAQ proteomics MAIZE SEEDLING roots cadmium stress iTRAQ proteomics maize seedling roots
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部