摘要
通过猜想齐次欧拉方程的解,推得与常系数线性齐次微分方程类似的一元n次特征方程,依据特征方程求得特征根,得到齐次欧拉方程的通解。
Through hypothesizing homogeneous solution of Euler equations, we infer that the linear homogeneous differential equation with constant coefficients is similar to characteristic equation of degree n with one unknown, based on the characteristic equation obtained by characteristic root, we get the general solution of homogeneous Euler equations.
作者
常秀芳
CHANG Xiu-fang(School of Mathematics and Statistics, Shanxi Datong University, Datong Shanxi, 037009)
出处
《山西大同大学学报(自然科学版)》
2019年第5期23-25,共3页
Journal of Shanxi Datong University(Natural Science Edition)
基金
山西大同大学教学改革资金资助项目[XJY2013211]
关键词
欧拉方程
特征方程
特征根
通解
Euler equation
characteristic equation
characteristic root
general solution