期刊文献+

Crevice Corrosion Behaviors Between CFRP and Stainless Steel 316L for Automotive Applications

Crevice Corrosion Behaviors Between CFRP and Stainless Steel 316L for Automotive Applications
原文传递
导出
摘要 Carbon fiber reinforced plastics (CFRP) are promising lightweight materials for vehicle applications. 316L is one of the most widely used types of austenite stainless steels and applied in lots of automotive applications. The existence of crevices will result in galvanic corrosion and crevice corrosion when CFRPs and 316L are directly connected. A crevice former for the galvanic system was therefore designed and applied to evaluate the crevice corrosion behaviors and study the mechanism of galvanic crevice corrosion through several electrochemical techniques in this research. The results showed that the crevice corrosion of galvanic systems grew from crevice mouth to the inside crevice and could be divided into four steps, metastable pitting corrosion at the crevice mouth, initiating step of crevice corrosion, propagating step and ending step of crevice corrosion. Because of the influences of the galvanic system, electrode reaction rates were speeded up and the passivation region was shortened at the initiating stage of crevice corrosion. Corrosion rate was observed to be higher in the galvanic system than that in normal crevice systems. Carbon fiber reinforced plastics(CFRP) are promising lightweight materials for vehicle applications. 316 L is one of the most widely used types of austenite stainless steels and applied in lots of automotive applications. The existence of crevices will result in galvanic corrosion and crevice corrosion when CFRPs and 316 L are directly connected. A crevice former for the galvanic system was therefore designed and applied to evaluate the crevice corrosion behaviors and study the mechanism of galvanic crevice corrosion through several electrochemical techniques in this research. The results showed that the crevice corrosion of galvanic systems grew from crevice mouth to the inside crevice and could be divided into four steps, metastable pitting corrosion at the crevice mouth, initiating step of crevice corrosion, propagating step and ending step of crevice corrosion. Because of the influences of the galvanic system, electrode reaction rates were speeded up and the passivation region was shortened at the initiating stage of crevice corrosion. Corrosion rate was observed to be higher in the galvanic system than that in normal crevice systems.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第10期1219-1226,共8页 金属学报(英文版)
基金 supported by National Key Research and Development Program of China (Grants No. 2018YFB0704400) National Natural Science Fund of China (Grants Nos. 51671059, 51871061, 51801028)
关键词 Crevice corrosion Galvanic system Carbon fiber REINFORCED plastics 316L STAINLESS STEELS Crevice corrosion Galvanic system Carbon fiber reinforced plastics 316L stainless steels
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部