期刊文献+

一种基于领域信任及不信任的奇异值分解推荐算法 被引量:7

Recommendation Algorithm with Field Trust and Distrust Based on SVD
下载PDF
导出
摘要 传统协同过滤算法存在数据稀疏与冷启动问题,社会化推荐算法虽然能在一定程度上缓解这些问题,但大多数的算法都只从单一的角度来衡量信任关系的影响。为了更准确地度量社交关系对推荐预测的影响,提出了一种基于领域信任及不信任的社会化奇异值分解(Field Trust and Distrust based Singular Value Decomposition,FTDSVD)推荐算法。该算法在SVD推荐算法的基础上加入了用户的信任关系与不信任关系,利用不信任关系对社交关系进行修正,并且充分考虑用户的信任领域相关性和全局影响力。在Epinions数据集上将FTDSVD算法与相关算法进行了对比,结果证实了该算法在提高推荐质量和缓解冷启动问题上效果显著。 The collaborative filtering algorithms in recommender systems usually suffer from data sparsity or cold-start problems.Although most of the existing social recommendation algorithms can alleviate these problems to a certain extent,they only measure the influence of trust relationship from a single aspect.In order to measure the influence of the social relationship on recommendation prediction more accurately,this paper proposed a novel social recommendation algorithm with field trust and distrust based on singular value decomposition (SVD),named FTDSVD.Based on the SVD algorithm,the trust relationship and distrust relationship information of users is added in order to correct the social relationship,and the global influence of users and the field relevance of trust are considered.Finally,it is compared with the state-of-the-art methods on the Epinions dataset .Experiment results show that the FTDSVD algorithm has obvious effects in improving the recommendation quality and alleviating the cold start problem.
作者 张琦 柳玲 文俊浩 ZHANG Qi;LIU Ling;WEN Jun-hao(School of Big Data and Software Engineering,Chongqing University,Chongqing 401331,China)
出处 《计算机科学》 CSCD 北大核心 2019年第10期27-31,共5页 Computer Science
基金 国家自然科学基金(61502062) 重庆市基础与前沿研究计划项目(cstc2015jcyjA40049)资助
关键词 信任推荐 不信任关系 领域相关性 奇异值分解(SVD) 推荐系统 Trust recommendation Distrust relationship Field correlation Singular value decomposition (SVD) Recommender system
  • 相关文献

参考文献3

二级参考文献103

  • 1刘玉龙,曹元大,李剑.一种新型推荐信任模型[J].计算机工程与应用,2004,40(29):47-49. 被引量:15
  • 2何光辉,魏曙光,王蔚韬.改进的聚类邻居协同过滤推荐算法[J].计算机科学,2004,31(11):147-149. 被引量:6
  • 3Linden G, Smith B, York J.Amazon.zom recommendations:Item to Item collaborative filtering[J],IEEE Internet Computing, 2003, 7 (1):76-80.
  • 4Kini A,Choobinh J.Trust in electronic:definition and theoretical considerations[C]//Proceedings of the 31st Hawaii International Conference on System Sciences, 1998,4: 51-61.
  • 5John O, Barry S.Trust no one: Evaluating trust-based filtering for recommendation[C]//Proceedings of the 18th International Florida Artificial Intelligence Research Society Conference, 2005: 289-294.
  • 6Jeong Buhwan,Lee Jaewook,Cho Hyunbo.User credit-based collaborative filtering[J].Expert Systems with Applications,2009,36 (3) :7309-7312.
  • 7Wang Z, Sun LF, Zhu WW, Yang SQ, Li HZ, Wu DP. Joint social and content recommendation for user-generated videos in online social network. IEEE Trans. on Multimedia, 2013,15(3):698-710. [doi: 10.1109/TMM.212.2237022].
  • 8Quijano-Sanchez L, Recio-Garcia J, Diaz-Agudo B. Social factors in group recommender systems. ACM Trans. on Intelligent Systems and Technology, 2013,4(1):Article No.8. [doi: 10.1145/2414425/2414433].
  • 9Social Network Analysis. A brief introduction. 2007. http://orgnet.Com/sna.html.
  • 10Jamali M, Ester M. A transitivity aware matrix factorization model for recommendation in social networks. In: Proc. of the IJCAI. AAAI Press, 2011. 2644-2649. [doi: IO.5591/978-1-57735-516-8/IJCAI11-440].

共引文献180

同被引文献42

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部