期刊文献+

基于梯形规划曲线的智能车速度规划算法研究 被引量:1

Research on Intelligent Vehicle Speed Planning Algorithms Based on Trapezoidal Planning Curve
下载PDF
导出
摘要 针对QP(Quadratic Programming)算法应用于智能车速度规划时,存在停车过程减速较晚而导致减速距离短、平稳性差的问题,文中提出了基于梯形规划曲线的智能车速度规划算法.首先建立速度规划的 QP模型并求解;然后分析不同初速度下基于梯形规划曲线的停车过程,将其结果作为非线性约束来实例化QP模型并再次求解;最后通过仿真实验和实车实验对比分析 QP算法和所提算法的实验结果.仿真实验中,分别以39.8km/h,31.5km/h,20.6km/h的初速度进入停车过程,速度变化曲线表明所提算法能够将减速开始时间提前,初步表明该算法具有优化效果;实车实验中,较QP算法而言,所提算法将3种初速度下的停车过程分别提前5.9s,5.0s,3.7s,平均加速度绝对值分别减少0.5m/s^2,0.5m/s^2,0.4m/s^2,最大加速度绝对值分别减少0.16m/s^2,0.33m/s^2,0.35m/s^2.仿真实验和实车实验表明,所提算法的改进效果明显,具有显著的优化作用. Aiming at the problem of short deceleration distance and poor stationarity caused by late deceleration in par- king process when QP (quadratic programming) algorithm is applied to speed planning of intelligent vehicles,there are some problems such as short deceleration distance and poor stationarity caused by late deceleration in the stopping process.This paper presented an intelligent vehicle speed planning algorithm based on the trapezoidal programming curve.Firstly,the QP model of speed planning is established and solved.Then,the stopping process based on trapezoidal programming curve at different initial speeds is analyzed,and its results are considered as nonlinear constraint to instantiate and solved QP model .Finally,the experimental results of QP algorithm and the algorithm were compared and analyzed through simulation experiment and real car experiment.In the simulation experiment,the initial speed of 39.8 km/h, 31.5 km/h and 20.6 km/h was used to enter the parking process respectively.The speed curve shows that the proposed algorithm can advance the deceleration time,which preliminarily shows that the algorithm has the optimization effect.In the real vehicle experiment,compared with QP algorithm,the proposed algorithm advances the parking process of the three initial speed by 5.9 s,5.0 s and 3.7 s,the absolute value of the average acceleration decreases by 0.5 m/s^ 2,0.5 m/s^ 2 and 0.4 m/s ^2 ,the absolute value of the maximum acceleration decreases respectively by 0.16 m/s ^2, 0.33 m/s^ 2 and 0.35 m/s^ 2 .The simulation and real vehicle experiments show that the improved method has obvious improvement effect and significant optimization effect.
作者 曹波 李永乐 朱英杰 贾斌 徐友春 CAO Bo;LI Yong-le;ZHU Ying-jie;JIA Bin;XU You-chun(Student Brigade 5,Army Military Transportation University,Tianjin 300161,China;Military Transportation Research Institute,Army Military Transportation University,Tianjin 300161,China)
出处 《计算机科学》 CSCD 北大核心 2019年第10期273-278,共6页 Computer Science
基金 国家重点研发计划项目(2016YFB0100903)资助
关键词 智能车 速度规划 QP算法 梯形规划曲线 Intelligent vehicle Speed planning QP algorithm Trapezoidal planning curve
  • 相关文献

参考文献4

二级参考文献70

  • 1张德兆,王建强,李升波,李克强.基于风险状态预估的弯道防侧滑超速预警系统[J].公路交通科技,2009(S1):44-48. 被引量:17
  • 2丁宝苍,邹涛,李少远.时变不确定系统的变时域离线鲁棒预测控制[J].控制理论与应用,2006,23(2):240-244. 被引量:11
  • 3李改弟.一个自动确定信赖域半径的信赖域方法[J].工程数学学报,2006,23(5):843-848. 被引量:28
  • 4MAYNE D Q, RAWLINGS J B, RAO C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789 - 814.
  • 5HESSON M A. Nonlinear model predictive control: Current status and future directions[J]. Computers and Chemical Engineering, 1998, 23(2): 187 - 202.
  • 6IMSLAND L, BAR N, FOSS B. More efficient predictive control[J]. Automatica, 2005, 41(8): 1395 - 1403.
  • 7HU B, LINNEMANN A. Toward infinite-horizon optimality in nonlinear model predictive control[J]. IEEE Transactions on Automatic Control, 2002, 47(4): 679 - 682.
  • 8LONG C E, POLISETTY P K, GATZKE E P. Nonlinear model predictive control using deterministic global optimization[J]. Journal of Process Control, 2006, 16(6): 635 - 643.
  • 9MARK C. Efficient nonlinear model predictive control algorithms [J]. Annual Reviews in Control, 2004, 28(2): 229 - 237.
  • 10BIEGLER L T. Simultaneous dynamic optimization strategies: Recent advances and challenges[J]. Computers and Chemical Engineering, 2006, 30(10-13): 1560 - 1575.

共引文献83

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部