期刊文献+

考虑自动驾驶仪延迟的多约束末制导律 被引量:1

Guidance Law with Drop Angle and Field-of-View Angle Constraints Considering Autopilot Lag
下载PDF
导出
摘要 设计了一种带有落角和视场角约束的末制导律。建立了带有导弹自动驾驶仪二阶动态特性的末制导模型;构造了一种新型的滑模面并结合动态面控制给出了制导律的设计方法;利用Lyapunov稳定性理论,证明了制导系统的弹目视线角和弹目视线角速率是收敛的,结合构造的障碍Lyapunov函数和滑模面的特性证明了视场角始终满足约束条件;仿真验证了制导律的有效性。 A terminal guidance law with drop angle and field-of-view constraints was proposed. The guidance model considering the second-order dynamic characteristics of the missile autopilot was established. A new sliding surface was constructed and the guidance command was given in combination with the dynamic surface control. By using the Lyapunov stability theory, it is proved that the line of sight angle and the line of sight angular rate of the guidance system are convergent. Combined with the characteristics of the barrier Lyapunov function and the sliding surface, it is proved that field-of-view angle satisfies the constraint condition. Simulation verifies the effectiveness of the guidance law.
作者 赵国荣 李晓宝 刘帅 赵超轮 ZHAO Guorong;LI Xiaobao;LIU Shuai;ZHAO Chaolun(University Staff Department, Naval Aviation University, Yantai 264001, China;Coastal Defence Academy, Naval Aviation University, Yantai 264001, China)
出处 《兵器装备工程学报》 CAS 北大核心 2019年第10期1-6,共6页 Journal of Ordnance Equipment Engineering
基金 国家自然科学基金项目(61473306)
关键词 制导律 落角约束 视场角约束 自动驾驶仪延迟 滑模控制 动态面控制 障碍Lyapunov函数 guidance law drop angle constraint field-of-view angle constraint autopilot lag sliding mode control dynamic surface control barrier Lyapunov function
  • 相关文献

参考文献5

二级参考文献50

  • 1周慧波,宋申民,刘海坤.具有攻击角约束的非奇异终端滑模导引律设计[J].中国惯性技术学报,2014,12(5):606-611. 被引量:22
  • 2黄春庆,施颂椒.输入受限机器人的鲁棒自适应输出反馈跟踪控制[J].控制与决策,2004,19(5):565-569. 被引量:1
  • 3Ratnoo A, Ghose D. Impact angle constrained intercep tion of stationary targets[J]. Journal of Guidance, Con- trol, and Dynamics, 2008, 31(6): 1816-1821.
  • 4Ratnoo A, Ghose, D. Impact angle constrained guidance against nonstationary nonmaneuver/ng targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (1): 269-275.
  • 5Lee C H, Kim T H, Tahk M J, et al. Polynomial guid ance laws considering terminal impact angle/acceleration constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 74-92.
  • 6I.ee J I, Jeon I S, Tahk M J. Guidance law to control im- pact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 301-310.
  • 7Cho H, Ryoo C K, Tahk M J. Implementation of optimal guidance laws using predicted velocity profiles[J]. Journal of Guidance, Control, and [)ynamics, 1999, 22 (4): 579-588.
  • 8Bryson A E, Jr, Ho Y C. Applied optimal control: opti- mization, estimation and control[M]. Revised ed. New York: Taylor gs. Francis, 1975:1 -41.
  • 9Ryoo C K, Cho H, Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guid- ance, Control, and Dynamics, 2005, 28(4): 724-732.
  • 10Ryoo C K, Cho H, Tahk M J. Time to go weighted opti real guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14 (3) : 483-492.

共引文献60

同被引文献12

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部