期刊文献+

基于组合赋权的遗传算法优化BP神经网络岩爆预测研究 被引量:1

Forecast Research on the Rockburst Tendency with the BP Neural Network Optimized by Genetic Algorithm Based on the Combination Weight
下载PDF
导出
摘要 针对岩爆倾向性预测的复杂问题,选取隧洞应力系数、脆性系数及围岩冲击倾向指数为评价指标,利用组合赋权法确定指标的权重,结合遗传算法和BP神经网络,建立了基于组合赋权的遗传算法优化BP神经网络的预测模型。利用岩爆实例数据对建立的模型进行测试,测试结果具有良好的准确度,验证了该模型的可行性及有效性。 According to the complex system problem of rockburst intensity prediction,the stress coefficient,brittleness coefficient and surrounding rock impact tendency index of tunnel are selected as the evaluation index. The weight of the indexs above is determined by the combination weighting method. Rock burst prediction model of BP Neural Network and Genetic Algorithm based on combination weighting method has been established. The established model above is tested by rockburst instance data,and the test results have good accuracy,which verifies the feasibility and effectiveness of the model.
作者 闫鹏洋 王利宁 郭培文 刘涛 Yan Pengyang;Wang Lining;Guo Peiwen;Liu Tao(China Construction Communications ENGRG. Group Corp.Ltd Beijing 100142,China;College of Civil Engineering,Tongji University Shanghai 200092,China)
出处 《广东土木与建筑》 2019年第10期66-70,共5页 Guangdong Architecture Civil Engineering
关键词 组合赋权法 遗传算法 BP神经网络 岩爆预测 combination weight genetic algorithm BP neural network rockburst prediction
  • 相关文献

参考文献14

二级参考文献157

共引文献418

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部