期刊文献+

基于签到数据和交通工具的多目标旅游路线推荐 被引量:1

Multi-objective Trip Recommendation Based on Check-in Data and Traffic Tools
下载PDF
导出
摘要 一般情况下,用户都希望花尽可能少的钱游览尽可能多的类别不同且得分高的景点,针对这一旅游路线推荐问题,提出了一种基于多约束多目标的剪枝(MCPA-MO)算法。首先,分析用户的历史签到数据,提出基于签到数据感知用户偏好和景点流行度的景点评分机制;然后,考虑在不同交通工具的选择下,景点之间会产生不同的转移时间和转移费用,进而影响时间和预算约束;最后,根据用户需求,使用MCPA-MO算法为用户计算出一条最优旅游路线。以Foursquare社交网站上的真实数据和马蜂窝上成都著名景点的信息作为数据集,实现并评估了推荐算法。实验结果表明,该方法能够为用户推荐更符合现实需求的个性化旅游路线。 In general, users want to spend little money to visit as many attractions with different categories and high scores as possible.In order to solve this problem, this paper proposes a multi-constrained and multi-objective pruning algorithm. First, it analyzes users1 historical check-in data, and proposes a rating mechanism of scenery spot based on users' check-in data-know users9 preferences and popularity of scenery spot. And this paper considers the different choices of vehicles, because the transfer between attractions will have different transfer time and costs. Finally, according to users9 needs, the MCPA-MO algorithm is used to calculate an optimal travel route for the user. The recommendation algorithm was implemented and evaluated using the real data on the Foursquare and the information on the famous attractions in Chengdu on the Horse Cell as the data set. Experimental results show that it can recommend personalized trip that meet the actual needs of users.
作者 张岐山 张兴婷 ZHANG QISHAN;ZHANG XINGTING(School of Economics and Management,Fuzhou University,Fujian Fuzhou 350116)
出处 《西安电子科技大学学报(社会科学版)》 2019年第3期66-76,共11页 Journal of Xidian University:Social Science Edition
基金 国家自然科学基金项目(61300104) 福建省自然科学基金(2018J01791)
关键词 用户偏好 交通工具的选择 剪枝算法 最优旅游路线 user preferences vehicle selection pruning algorithm optional route plan
  • 相关文献

参考文献2

二级参考文献35

  • 1Zheng Yu, Xie Xing, Ma Wei-Ying. Mining interesting loca- tions and travel sequences from GPS trajectories//Proceed- ings of the 18th International World Wide Web Conference (WWW 2009). Madrid, Spain, 2009:791-800.
  • 2Majid A, Chen Ling, Mirza H T. et al. Mining context- aware significant travel sequences from geotagged social media//Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). Toronto, Canada, 2012:2443-2444.
  • 3Lu Xin, Wang Chang-Hu, Yang Jiang-Ming, et al. Photo2Trip: Generating travel routes from geo-tagged photos for trip planning//Proeeedings of the ACM International Conference on Multimedia. Firenze, Italy, 2010:143-152.
  • 4Kurashima T, Iwata T, Irie G, Fujimura K. Travel route recommendation using geotags in photo sharing sites// Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM 2010). Toronto, Canada, 2010:579-588.
  • 5Yoon H, Zheng Y. Xie X, Woo W. Social itinerary recom- mendation from user-generated digital trails. Personal and Ubiquitous Computing, 2012, 16(5): 469-484.
  • 6Cao Xin, Chen Li-Si, Cong Gao, Xiao Xiao-Kui. Keyword- aware optimal route search//Proceedings of the VLDB Endowment 2012. Istanbul, Turkey, 2012: 1136-1147.
  • 7Hsieh H-P, Li Cheng-Te, Lin Shou-De. Exploiting large- scale cheek-in data to recommend time-sensitive routes//Pro- eeedings of the 14th International Conference on Ubiquitous Computing (UrbComp' 12). Beijing, China, 2012:55-62.
  • 8Zheng Yu, Zhang Li-Zhu, Xie Xing, Ma Wei-Ying. Mining correlation between locations using human location history// Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACMGIS'09). Seattle, WA, USA, 2009:472-475.
  • 9Lian De-Fu, Xie Xing. Learning location naming from user check-in histories//Proceedings of the 19th ACM SIGSPA- TIAL International Conference on Advances in Geographic Information Systems (ACM GIS'11). Chicago, USA, 2011: 112-121.
  • 10Arase Y, Xie Xing, Hara T, Nishio S. Mining people's trips from large scale geo tagged photos//Proceedings of the ACM International Conference on Multimedia. Firenze, Italy, 2010:133-142.

共引文献46

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部