期刊文献+

Perfect optical nonreciprocity in a double-cavity optomechanical system 被引量:4

原文传递
导出
摘要 Nonreciprocal devices are indispen.sablo for building quantuin networks and ubiquitous in modern communication technology.Here,we propose to take advantage of the interference between optome-chanical interaction and lincarly-couplcd interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system.Particularly,we have derived essential conditions for perfect optical nonrcciprocity ancl analysed properties of the optical nonreciprocal transmission.These results can be used to control optical transmission in quantum information processing.
出处 《Frontiers of physics》 SCIE CSCD 2019年第5期105-110,共6页 物理学前沿(英文版)
基金 L. Yang was supported by the National Natural Science Foundation of China (Grant No. 11804066) the China Postdoctoral Science Foundation (Grant No. 2018M630337) Fundamental Research Funds for the Central Universities (Grant No. 3072019CFM0405).
  • 相关文献

参考文献4

二级参考文献127

  • 1Kepler J.. De Cometis. (1619).
  • 2Actually Kepler’sconjecture is not fully accurate. From theviewpoint of modern astronomy, the formation and deflection of comettails are due to the forces from both radiation pressure and solarwind.
  • 3Ashkin A.. History of optical trapping and manipulation of small-neutralparticle, atoms, and molecules. EEE J. Sel. Top. Quantum Electron., (2000), 6, 6:841.
  • 4Braginsky V. B., Manukin A. B.. Measurement of weak forces in physics experiments. Chicago: niversity of ChicagoPress, (1977).
  • 5Vahala K. J.. Optical microcavities. Nature, (2003), 424, 6950:839.
  • 6Ma J., Povinelli M. L.. Applicationsof optomechanical effects for on-chip manipulation of light signals. Curr. Opin. Solid StateMater. Sci., (2012), 16, 2:82.
  • 7Cai H., Xu K., Liu A., Fang Q., Yu M., Lo G., Kwong D.. Nano-opto-mechanicalactuator driven by gradient optical force. Appl. Phys. Lett., (2012), 100, 1:013108.
  • 8Guo X., Zou C. L., Ren X. F., Sun F. W., Guo G. C.. Broadband opto-mechanicalphase shifter for hotonic integrated circuits. Appl. Phys. Lett., (2012), 101, 7:071114.
  • 9Kippenberg T. J., Vahala K. J.. Cavity opto-mechanics. Opt. Express, (2007), 15, 25:17172.
  • 10Kippenberg T. J., Vahala K. J.. Cavity optomechanics: Back-action at the mesoscale. Science, (2008), 321, 5893:1172.

共引文献14

同被引文献16

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部