期刊文献+

基于多目标进化算法和决策技术的螺旋桨优化设计研究 被引量:8

Optimal Design of Propeller Based on Multi-objective Evolutionary Algorithm and Decision Technology
下载PDF
导出
摘要 论文采用RNSGA-Ⅱ-SBJG优化算法,开展考虑兼顾推进效率、空泡、激振力及桨叶强度等要求的螺旋桨优化设计。该算法基于实数编码的非支配排序多目标遗传算法RNSGA-Ⅱ,并引入跳变基因算子以提升基因多样性、加快寻优进程。此外,还引入灰色关联度分析方法,通过计算Pareto解集与理想解的关联度,对优化解集进行评价排序。应用上述方法,对某集装箱船螺旋桨进行了船桨匹配和船机桨匹配情况下的优化设计。数值结果表明,Pareto解集分散良好,基于灰色关联度分析的优化解评价方法能够有效和合理地选取优化设计方案。 Algorithm RNSGA-II-SBJG is a variant of the real-coded non-dominated sorting genetic algorithm(RNSGA)and is adopted to optimize propeller design with consideration of requirements in propulsive efficiency,cavitation,excitation force and blade strength.Simulated binary jumping gene(SBJG)operator is introduced to improve genetic diversity and expedite searching process.To determine the optimal design from the Pareto solution set,a grey relational analysis approach is employed.The proposed method is applied to optimize the design of a container-ship propeller under the requirement of hull-propeller matching and hull-engine-propeller matching respectively.Numerical results indicate that the Pareto solutions are well dispersed,and optimal solutions can be effectively identified by the grey relational analysis.
作者 杨路春 杨晨俊 李学斌 YANG Luchun;YANG Chenjun;LI Xuebin(State Key Laboratory of Ocean Engineering,Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration,Shanghai Jiao Tong University,Shanghai 200240,China;Wuhan Second Ship Design and Research Institute,Wuhan 430000,China)
出处 《中国造船》 EI CSCD 北大核心 2019年第3期55-66,共12页 Shipbuilding of China
基金 海装十二五预研项目“XXXX螺旋桨水动力性能预报”(31511060101)
关键词 螺旋桨 设计 优化 RNSGA-Ⅱ-SBJG 跳变基因 灰色关联度分析 propeller design optimization RNSGA-II-SBJG jumping genes grey relational analysis
  • 相关文献

参考文献3

二级参考文献26

  • 1赵峰,冯有章.基于BP^2-δ图谱的螺旋桨计算机初步和终结设计[J].船舶工程,1995(5):13-18. 被引量:6
  • 2刘勇.非数值并行算法(第二册)[M].北京:科学出版社,1997..
  • 3蒋维清 等.船舶原理[M].北京:人民交通出版社,1991..
  • 4Dai C, Hambric S, Mulvihill L, Tong Siu Shing, Powell D. A prototype marine propulsor design tool using artificial intelligence and numerical optimization techniques[J]. SNAME Transactions, 1994, 102: 57-69.
  • 5Shin H J, Hwangbo S M. Wake fields prediction on the propeller plane by neural network[C]//Practical Design of Ships and Other Floating Structure. Shanghai, China, 2001.
  • 6Koushan K. Mathematical expressions of thrust and torque of Newton-Rader propeller series for high speed crafts using artificial neural networks[C]//Proceedings of FAST2005, 8th International Conference on Fast Sea Transportation. St.-Petersburg, Russia, 2005.
  • 7Koushan K. Mathematical expressions of thrust and torque of Gawn-Burrill propeller series for high speed crafts using artificial neural networks[C]//Proceedings of FAST2007 9th International Conference on Fast Sea Transportation. Shanghai, China, 2007.
  • 8Koushan K. Automatic hull from optimization towards lower resistence and wash using artificial intelligence[C]//Proceedings of FAST2003, 7th International Conference on Fast Sea Transportation. Ischia, Italy, 2003.
  • 9Zeng Zhibo, Kuiper G. Blade section design of marine propellers with maximum inception speed[C]//Proceedings of the 7th International Symposium on Cavitation CAV2009 August 17-22, 2009. Ann Arbor, Michigan, USA, 2009.
  • 10许东,吴铮.基于MATLAB6.X的系统设计与分析(神经网络)[M].西安:西安电子科技大学出版社,2002.

共引文献37

同被引文献46

引证文献8

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部