期刊文献+

基于Radau伪谱法的UCAV攻击突防轨迹规划研究 被引量:1

Research on Trajectory Planning of UCAV Attack Based on Radau Pseudospectral Method
下载PDF
导出
摘要 针对无人作战飞机(UCAV)攻击突防阶段轨迹规划问题,提出一种基于Radau伪谱法(RPM)求解最优突防轨迹的方法.在综合考虑UCAV气动力特性、发动机推力特性及大气环境特性基础上建立了高精度UCAV(3-DOF)质点模型,并详细分析了UCAV初始、终端、飞行性能等约束;建立了动态RCS威胁模型,并构建了最优控制理论框架的UCAV攻击突防轨迹规划模型;利用RPM求得攻击突防轨迹最优解.通过仿真对时间最短和威胁最小2种情况下的轨迹优化问题进行验证,结果表明,上述算法能够生成满足多种复杂约束条件、真实可行的最优突防轨迹,并具有一定的实时性和较高的精度. Aiming at the problem of UCAV attack penetration trajectory planning,the paper proposes a strategy based on Radau pseudo-spectral method to solve the optimal penetration trajectory. Considering UCAV aerodynamic characteristics,engine thrust characteristics and atmospheric environmental characteristics,a high - precision UCAV (3 - DOF) particle model was established,and the constraints of UCAV initial,terminal and flight performance were analyzed in detail. The establishment was established. The dynamic RCS threat model was constructed,and the UCAV attack penetration trajectory planning model of the optimal control theory framework was constructed. The optimal solution of the attack penetration trajectory was obtained through RPM. The trajectory optimization problems with the shortest time and the least threat were simulated. The results show that the algorithm can generate the optimal and feasible trajectory that meets many complex constraints and with faster speed and higher precision.
作者 粟建波 钟海 尹文强 SU Jian-bo;ZHONG Hai;YIN Wen-qiang(AVIC Aeronautical Science and Technology Key Laboratory of Flight Simulation,CFTE,Xi’an Shanxi 710089,China)
出处 《计算机仿真》 北大核心 2019年第10期54-58,共5页 Computer Simulation
关键词 无人作战飞机 轨迹规划 伪谱法 雷达散射截面 Unmanned combat aerial vehicle( UCAV) Trajectory planning Pseudo-spectral method( PM) Radar cross section( RCS)
  • 相关文献

参考文献5

二级参考文献64

  • 1雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 2Hurni M A, Sekhavat P, Ross I M. Autonomous path planning using real-time information updates[R]. AIAA 2008 6305, 2008.
  • 3Shimoda S, Kuroda Y, Iagnernrna K. Potential field navi gation of high speed unmanned ground vehicles on uneven terrain [C] //International Conference on Robotics and Automation. 2005: 2839-2844.
  • 4Kim S H, Bhattacharya R. Motion planning in obstacle rich environments[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(7): 433-450.
  • 5Lu W C, Mora Camino F, Achaibou K. A flatness based flight guidance control using neural networks[C]// IEEE the 24th Digital Avionics Systems Conference. 2005~ 6. C. 1.1-6. C. 1.7.
  • 6Nikolos I K, Valavanis K P. Evolutionary algorithm based of{line/online path planner for UAV navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2003, 33(6): 898-912.
  • 7Foo J L, Knutzon J, Kalivarapu V, et al. Path planning of unmanned aerial vehicles using B-splines and particle swarm optimization[J]. Journal of Aerospace Computing, Information, and Communication, 2009, 6(4): 271 290.
  • 8Kaneshige J, Krishnakumar K. Artificial immune system approach for air combat maneuvering[C]// Proceedings of the International Society for Optical Engineering. 2007, 6560: 656009.
  • 9Frazzoli E, Dahleh M A, Feron E. Real time motion plan ning for agile autonomous vehicles[J].Journal of Guid ance, Control, and Dynamics, 2002, 25(1): 116-129.
  • 10Kuwata Y, Karaman S, Teo J, et al. Real time motion planning with applications to autonomous urban driving [J]. IEEE Transactions on Control Systems Technology, 2009, 17(5), 1105-1118.

共引文献62

同被引文献16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部