期刊文献+

基于大数据平台的网络低效能挖掘分析

Analysis of Network Low Efficiency Mining based on Big Data Platform
下载PDF
导出
摘要 大数据越来越受到运营商的重视,如何在既有的海量数据中挖掘更多的“金矿”,需要依托大数据平台,整合不同部门之间的数据,从而得到新的交叉价值。在对网络侧(O域)数据的挖掘中,引入用户侧(B域)数据,通过机器学习算法建立一套智能化的网络低效能评估体系,动态化定位并分析低效能区域,根据逻辑回归算法输出用户数、流量以及收益等维度的低效能场景,针对性地进行网络和用户的潜能挖掘,从而改善低效能区域,提升整体的网络效能与收益。 Big data is attracting more and more attention from operators. How to mine more "gold deposits” from existing massive data needs to rely on the big data platform to integrate data between different departments, so as to obtain new cross-value. In the mining of network side (0 domain) data, user side (B domain) data is introduced, and an intelligent network low-efficiency evaluation system is established by machine learning algorithms. The low-efficiency areas are positioned and analyzed dynamically. According to the low-efficiency scenarios o£ user number, traffic and revenue dimension output by logistic regression algorithm, the potential of network and user is tapped pertinently, so as to improve the low-efficiency areas and enhance the overall network efficiency and benefits.
作者 徐青 蒋波 XU Qing;JIANG Bo(Sichuan Branch, China Unicorn, Chengdu Sichuan 610041, China)
出处 《通信技术》 2019年第10期2447-2451,共5页 Communications Technology
关键词 大数据平台 B+O数据分析 数据挖掘 网络效能 场景分析 big data platform B+0 data analysis data mining network efficiency scene analysis
  • 相关文献

参考文献2

二级参考文献5

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部