期刊文献+

基于自编码网络的移动轨迹异常检测 被引量:4

Anomaly Detection in Mobile Trajectory Using Auto-encoder Network
下载PDF
导出
摘要 移动轨迹异常检测是指从一群轨迹中寻找偏离一般模式的轨迹。基于聚类的异常检测依赖成对轨迹的距离计算,其计算实时性差且异常检测准确率低。提出面向移动轨迹异常检测的自编码网络,该模型对一般模式的轨迹有鲁棒的向量化表达能力,能够重构出与原始轨迹相近的输出;而对于偏离一般模式的轨迹敏感,重构后的输出与原始轨迹的差异大。根据该差异可直接检测异常,无需计算轨迹间的距离。以出租车轨迹为研究对象,试验结果表明该模型有更高的F Score,并且在数据量较大时检测时间低于参照方法,因此在高动态、大数据量的场景具有更好的适用性。 Mobile trajectory anomaly detection refers to finding the trajectories deviating from the general pattern. Cluster-based anomaly detection methods rely on the calculation of paired distances, which has high computational complexity. An auto-encoder network for moving trajectory anomaly detection is proposed. The model has a robust vectorized representation of the normal data, and is able to reconstruct an output close to original trajectory. However, the model is sensitive to the data deviating from general patterns, which means that the deviation between the reconstructed output and original trajectory is large. We use the deviation to discriminate whether the trajectory is anomaly, without calculating the paired distances. We conducted experiments using taxi trajectories. The result shows that our method has higher F Score, and the detection time is lower than the reference methods when the amount of data is large. Therefore, our method has better applicability in real-time and large-data-volume scenarios.
作者 方华强 颜寒祺 陈波 程承旗 FANG Huaqiang;YAN Hanqi;CHEN Bo;CHENG Chengqi(College of Engineering,Peking University,Beijing 100871,China;Academy for Advanced Interdisciplinary Studies,Peking University,Beijing 100871,China)
出处 《地理信息世界》 2019年第5期41-44,52,共5页 Geomatics World
基金 国家重点研发计划项目(2018YFB0505300)资助
关键词 自编码网络 异常检测 移动轨迹 深度学习 autoencoder network anomaly detection mobile trajectory deep learning
  • 相关文献

参考文献2

二级参考文献85

  • 1Tenenbaum J B, Silva V de, and Langford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290: 2319-2323.
  • 2Roweis S T and Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290: 2323-2326.
  • 3Rahimi A, Recht B, and Darrell T. Learning to transform time series with a few examples [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1759-1775.
  • 4Wang Liang and Suter D. Learning and matching of dynamic shape manifolds for human action recognition [J]. IEEE Trans. on Image Processing, 2007, 16(6): 1646-1661.
  • 5Hinton G E and Salakhutdinov R R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313: 504-507.
  • 6Zeng Xian-Hua, Luo Si-Wei, and Wang Jiao. Auto-associative neural network system for recognition [C]. Proceedings of the sixth international conference on machine learning and cybernetics, Hong Kong, 2007: 2885-2890.
  • 7Hinton G E. Training products of experts by minimizing contrastive divergence. Neural Computation[J]. 2000, 14(8): 1771-1800.
  • 8Chen H and Murray A F. A continuous restricted Boltzmann machine with hardware-amenable learning algorithm [C]. Proceedings of 12th Int. Conf. on Artificial neural networks (ICANN2002), Madrid, Spain, 2002: 358-363.
  • 9Chen H and Murray A F. Continuous restricted Boltzmann machine with an implementable training algorithm [J]. IEE Proceedings of Vision, Image and Signal Processing, 2003, 150(3): 153-158.
  • 10Hinton G E. Training products of experts by minimizing contrastive divergence. London: Gatsby Computational Neuroscience Unit, Technical Report: GCNU TR 2000-004, 2000.

共引文献126

同被引文献47

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部