期刊文献+

移动群智感知中基于社区的任务分发算法 被引量:8

Task distribution algorithm based on community in mobile crowd sensing
下载PDF
导出
摘要 针对移动群智感知(MCS)任务分发的有效性和精准性问题,提出了基于社区的任务分发算法。为了解决所提问题,该方法首先通过计算移动节点间的最小生成树、连接参量、社区融合度,抽象和识别出节点的行为模式,将用户合理划分成不同的社区,然后计算感知任务与社区行为模式特征值的匹配度,根据匹配度由社区的中心节点完成任务的分发。仿真结果表明,与其他算法相比,所提方法有效地提高了任务分发的精确性和任务完成率,节约了任务完成的时间成本。 A community-based task distribution algorithm was proposed to solve the problem of the validity of mobile crowd sensing (MCS) task distribution.By calculating the minimum spanning tree (MST),the connection parameter (CP) and the community convergence degree (CI) between the mobile nodes,the behavior patterns of the users were abstracted and identified to rationally divide the nodes into different communities.Then,the eigenvalue matching degree of the community behavior patterns with the sensing task was calculated.According to the matching degree,the distribution of the corresponding tasks was completed by the central node of the community.The simulation results show that the proposed method can effectively improve the accuracy of the task distribution and the task completion rate,and save the time cost of the task completion.
作者 龙浩 张书奎 张洋 张力 LONG Hao;ZHANG Shukui;ZHANG Yang;ZHANG Li(School of Computer Science and Technology,Soochow University,Suzhou 215006,China;School of Information and Electrical Engineering,Xuzhou College of Industrial Technology,Xuzhou 221002,China)
出处 《通信学报》 EI CSCD 北大核心 2019年第10期42-54,共13页 Journal on Communications
基金 国家自然科学基金资助项目(No.61201212) 江苏省高等学校自然科学研究面上项目(No.19KJB520061) 徐州市应用基础研究计划基金资助项目(No.KC17074) 苏州市融合通信重点实验室(No.SKLCC2013XX) 江苏省青蓝工程人才培养计划(No.102508999008) 苏州市重点产业技术创新前瞻性应用研究项目(No.SYG201730)~~
关键词 移动群智感知 社区 行为模式 任务分发 匹配度 mobile crowd sensing community behavior pattern task distribution matching degree
  • 相关文献

参考文献9

二级参考文献42

  • 1GAO H, HU J, HUANG T. Security issues in online social networks[J]. IEEE Interact Computing, 2011, 15(4): 56-63.
  • 2FIRE M, GOLDSCHMIDT R, ELOVICI Y. Online social networks: threats and solutions survey[J]. IEEE Communications Surveys and Tutorials, 2013, 16(4): 2019-2036.
  • 3CAVIGLIONE L, COCCOLI M, MERLO A. A taxonomyased model of security and privacy in online social networks[J]. Intemational Journal of Computational Science and Engineering, 2014, 9(4): 325-338.
  • 4GAO H, HU J, WILSON C. Detecting and characterizing social Spare campaigns[C]//The 10th ACM SIGCOMM conference on Intemet Measurement. Melbourne, Australia, 2010:35-47.
  • 5LEE K, EOFF B D, CAVERLEE J. Seven months with the devils: a long-term study of content polluters on twitter[C]//The Fifth Interna- tional AAA Conference on Weblogs and Social Media. Barcelona, Spain, 2011: 185-192.
  • 6MARTINEZ-ROMO J, ARAUJO L. Detecting malicious tweets in trending topics using a statistical analysis of language[J]. Expert Sys- tems with Applications, 2013, 40(8): 2992-3000.
  • 7MILLER Z, DICKINSON B, DEITRICK W. Twitter Spammer detec- tion using data stream clustering[J]. Information Sciences, 2014, 260: 64-73.
  • 8ZHANG J, GU G. NEIGHBORWATCHER: A content-agnostic com- ment spam inference system[C]//Network & Distributed System Secu- rity Symposium. San Diego, CA, United States, 2013.
  • 9BENEVENUTO F, MAGNO G, RODRIOUES T. Detecting spammers on twitter[C]//The Collaboration, Electronic Messaging, Anti-abuse and Sparn Conference. Redmond, USA, 2010:6-12.
  • 10ZHENG X, ZENG Z, CHEN Z. Detecting spammers on social net- works[J]. Neurocomputing, 2015, 159(2): 27-34.

共引文献111

同被引文献62

引证文献8

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部