摘要
基于局部间断有限元(LDG)方法求解两点边值问题.数值上验证了对于md-LDG方法,P+1阶的右Radau点与左Radau点分别是数值解U和导数Q的P+2阶超收敛点.对于一致且守恒的间断有限元法,在数值解导数Q处,P阶Gauss点是P+1阶的超收敛.
In this paper, a numerical study of the superconvergence points of a class of discontinuous Galerkin methods for an one-dimensional elliptic equation is presented. For md-LDG method, the P+1 degree right Radau points and left Radau points are the P + 2 degree superconvergence points for U and Q, respectively. For other well-defined consistent and conservative DG methods, only the P degree Gauss points are the P + 1 order superconvergence points for Q.
作者
张作政
ZHANG Zuozheng(School of Computer Engineering and Applied Mathematics, Changsha University,Changsha Hunan 410022, China)
出处
《长沙大学学报》
2019年第5期53-58,共6页
Journal of Changsha University
基金
湖南省自然科学基金(批准号:2018JJ2454)
长沙学院科技计划项目(批准号:K1705079)
关键词
间断有限元
两点边值问题
超收敛
discontinuous Galerkin method
two boundary values problems
superconvergence