期刊文献+

由两端弹性支承的对称梁导出对称简支梁的多项式型位移函数

Deriving Polynomial Displacement Function of Symmetric Simply Supported Beam from Symmetric Beam with Two Elastic Supports
下载PDF
导出
摘要 计算了基模态和第二阶模态下两端弹性支承对称梁的多项式型位移函数,在拉伸弹簧刚度和扭转弹簧刚度满足的极限条件下,它可以导出对称简支梁的位移函数,但不能导出两端固定对称梁的位移函数。在相差一个常数因子的条件下,多项式型位移函数是唯一的。 The polynomial displacement function of symmetric beam with two elastic supports of the fundamental mode and the second-order mode is calculated.Under the limit conditions of extension spring stiffness and torsion spring stiffness,it can derive the displacement function of the symmetric simply supported beam,but it can't derive the displacement function of the symmetric beam with two fixed ends.Under the condition of a constant factor,the displacement function is unique.
作者 何敏 江燕燕 黄忠 周清卿 王其申 HE Min;JIANG Yanyan;HUANG Zhong;ZHOU Qingqing;WANG Qishen(School of Physics&Electrical Engineering,Anqing Normal University,Anqing 246133,China)
出处 《安庆师范大学学报(自然科学版)》 2019年第4期58-59,共2页 Journal of Anqing Normal University(Natural Science Edition)
基金 安徽省自然科学基金面上项目(1808085MA05,1808085MA20)
关键词 基模态 对称简支梁 多项式型位移函数 fundamental mode symmetric simply supported beam polynomial displacement function
  • 相关文献

参考文献4

二级参考文献30

  • 1Candan S, Elishakoff I. Cnstructing the axial stiffness of longitudinally vibrating rod from fundamental mode shape.International Journal of Solids and Structures, 2001, 38:3443-3452.
  • 2Elishakoff I, Candan S. Apparently first closed-form solution for vibrating inhomogeneous beams. International Journal of Solids and Structures, 2001, 38:3411-3441.
  • 3Guede Z, Elishakoff I. Apparently first closed-form solutions for inhomogeneous vibrating beams under axial loading. Proc R Lond, 2001, A457:623-649.
  • 4Wang QS, Wang DJ. Inverse mode problem for continuous second-order systems. In: Proceedings of the International Conference on Vibration Engineering ICVE94, 1994.167-170.
  • 5I. Elishakoff and S. Candan. Apparently first closed - form solu- tion for frequencies of der ministica[ly and/or stochastically in- homogeneous simply supported beams [ J . Journal of Applied Mechanics, 2001,68(3) :176 - 185.
  • 6I. Elishakoff and S. Candan. Apparently first closed - form solu- tion for vibrating inhomoge - neous beams[J]. Intemation Journal of Solids and Structures, 2001, 38:3411 -3441.
  • 7Z. Guede and I. Elishakoff. Apparently first closed - form solu- tions for inhomogeneous vibrating beams under axial loading [ J ]. Proc. R. SOe. Lond. A, 2001,457:623-649.
  • 8Lei Wu, Qi - shen Wang and I. Elishakoff. Semi - inverse meth- od for axially functionally graded beams with an anti - symmetric vibration mode [ J]. Journal Sound and Vibration, 2005, 284 (3) : 1190 -1202.
  • 9Lei Wu, Li - hua Zhang, Qi - shen Wang, I. Elishakoff. Recon- structing Cantilever Beams Via Vibration Mode with a Given Node Location[J]. Acta Mechanica (AUS), 2011, 217 (1):135 - 148.
  • 10C. T. Loy, K.Y. Lam, J.N. Reddy. Vibration of functionally graded cylindrical shells[ J]. International Journal of Mechanical Science, 1999, (41):309-324.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部