期刊文献+

Incorporating travel time reliability in predicting the likelihood of severe crashes on arterial highways using non-parametric random-effect regression 被引量:4

Incorporating travel time reliability in predicting the likelihood of severe crashes on arterial highways using non-parametric random-effect regression
原文传递
导出
摘要 Travel time reliability(TTR) modeling has gain attention among researchers’ due to its ability to represent road user satisfaction as well as providing a predictability of a trip travel time.Despite this significant effort,its impact on the severity of a crash is not well explored.This study analyzes the effect of TTR and other variables on the probability of the crash severity occurring on arterial roads.To address the unobserved heterogeneity problem,two random-effect regressions were applied;the Dirichlet random-effect(DRE)and the traditional random-effect(TRE) logistic regression.The difference between the two models is that the random-effect in the DRE is non-parametrically specified while in the TRE model is parametrically specified.The Markov Chain Monte Carlo simulations were adopted to infer the parameters’ posterior distributions of the two developed models.Using four-year police-reported crash data and travel speeds from Northeast Florida,the analysis of goodness-of-fit found the DRE model to best fit the data.Hence,it was used in studying the influence of TTR and other variables on crash severity.The DRE model findings suggest that TTR is statistically significant,at 95 percent credible intervals,influencing the severity level of a crash.A unit increases in TTR reduces the likelihood of a severe crash occurrence by 25 percent.Moreover,among the significant variables,alcohol/drug impairment was found to have the highest impact in influencing the occurrence of severe crashes.Other significant factors included traffic volume,weekends,speed,work-zone,land use,visibility,seatbelt usage,segment length,undivided/divided highway,and age. Travel time reliability(TTR) modeling has gain attention among researchers’ due to its ability to represent road user satisfaction as well as providing a predictability of a trip travel time.Despite this significant effort,its impact on the severity of a crash is not well explored.This study analyzes the effect of TTR and other variables on the probability of the crash severity occurring on arterial roads.To address the unobserved heterogeneity problem,two random-effect regressions were applied;the Dirichlet random-effect(DRE)and the traditional random-effect(TRE) logistic regression.The difference between the two models is that the random-effect in the DRE is non-parametrically specified while in the TRE model is parametrically specified.The Markov Chain Monte Carlo simulations were adopted to infer the parameters’ posterior distributions of the two developed models.Using four-year police-reported crash data and travel speeds from Northeast Florida,the analysis of goodness-of-fit found the DRE model to best fit the data.Hence,it was used in studying the influence of TTR and other variables on crash severity.The DRE model findings suggest that TTR is statistically significant,at 95 percent credible intervals,influencing the severity level of a crash.A unit increases in TTR reduces the likelihood of a severe crash occurrence by 25 percent.Moreover,among the significant variables,alcohol/drug impairment was found to have the highest impact in influencing the occurrence of severe crashes.Other significant factors included traffic volume,weekends,speed,work-zone,land use,visibility,seatbelt usage,segment length,undivided/divided highway,and age.
出处 《Journal of Traffic and Transportation Engineering(English Edition)》 CSCD 2019年第5期470-481,共12页 交通运输工程学报(英文版)
基金 the Center for Accessibility and Safety for an Aging Population at Florida State University Florida A&M University University of North Florida for funding support in research
关键词 Travel time reliability Crash severity NON-PARAMETRIC DISTRIBUTED random-effect Gaussian DISTRIBUTED random-effect DIRICHLET process prior Travel time reliability Crash severity Non-parametric distributed random-effect Gaussian distributed random-effect Dirichlet process prior
  • 相关文献

同被引文献33

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部