摘要
基于反向传播神经网络、径向基函数神经网络和广义回归神经网络对采煤工作面瓦斯涌出量进行预测,比较和分析了瓦斯涌出量的预测值和实测值,并选定精度评价体系对预测结果进行评定。结果表明:反向传播神经网络、广义回归神经网络和径向基函数神经网络都能够较好的预测瓦斯涌出量,其中径向基函数神经网络的预测更精准。径向基函数神经网络的后验差检验比值c=0.07,小误差概率P=1.0,预测误差精度达到1级。
The outflow volume of gas on the coal mining surface is predicted in the present paper based on reverse propagation neural network,radial basis function neural network and general regression neural network,the prediction and measured value of gas excitability is compared and analyzed,and the accuracy evaluation system is selected to evaluate the results.It shows that the reverse propagation neural network,the generalized regression neural network and the radial function neural network can all predict the gas outflow well,but the prediction of the radial function neural network is more accurate.The posterior difference test ratio of RBFNN is 0.07 with small probability error of 1.0.Therefore,the precision of prediction reaches the level of 1.0.
作者
徐琦
蒋勤
傅丹华
宗俊
金京
高巍
XU Qi;JIANG Qin;FU Danhua;ZONG Jun;JIN Jing;GAO Wei(School of Materials and Chemical Engineering,Ningbo University of Technology,Ningbo,Zhejiang,315211,China)
出处
《宁波工程学院学报》
2019年第3期8-13,共6页
Journal of Ningbo University of Technology
关键词
瓦斯涌出量
反向传播神经网络
径向基函数神经网络
广义回归神经网络
gas emission
back propagation neural network
radial basis function neural network
general regression neural network