期刊文献+

基于CNN的PCMA信号调制识别方法 被引量:3

A modulation identification approach for PCMA signals based on convolutional neural networks
下载PDF
导出
摘要 已有的针对成对载波多址(PCMA)信号调制识别的方法,其主要思想是利用高阶统计量构造识别特征量对调制类型进行识别。由于高阶统计量的估计需要较多的符号数才能达到较高的精度,故在符号数较少的情况下,这些方法的性能较差。基于深度学习的思想和卷积神经网络(CNN)的特点,提出一种新的PCMA信号调制类型识别方法,仅需要较少的符号数就能够有效识别PCMA信号调制类型。卷积神经网络的应用使得该方法对频偏和相偏具有很强的鲁棒性,且在不同的信噪比下都能够保持良好的识别性能。仿真实验结果表明,利用1000个符号,在信噪比为10dB时,新方法的调制类型正确识别率达到90%,明显优于其它方法,但是其算法复杂度较高。 The basic idea of the existing methods for modulation identification of PCMA signals is to utilize the high-order statistics of the signals to construct the corresponding features for modulation recognition. However, sufficient transmitted symbols are needed to achieve high estimation accuracy for high-order statistics. Therefore, the existing methods possess poor identification performance without sufficient transmitted symbols. Based on the idea of deep learning and the property of CNN, a novel approach for modulation recognition of PCMA signals is proposed, which can effectively identify the modulation type of the PCMA signals and achieve high identification accuracy with less transmitted symbols. Moreover, the application of CNN makes the proposed approach much robust to frequency offset and phase offset, and the approach has good identification performance under different SNR. The simulation results show that the correct modulation recognition rate of the proposed approach is more than 90% with 10dB SNR and 1000 transmitted symbols, which obviously outperforms the existing methods. However, the time consumption of the proposed approach is higher than the existing methods.
作者 李林俊 戴旭初 LI Linjun;DAI Xuchu(Department of Electronic Engineering and Information Science,University of Science and Technology of China,Hefei 230027,China)
出处 《遥测遥控》 2019年第4期17-22,共6页 Journal of Telemetry,Tracking and Command
关键词 成对载波多址 调制识别 卷积神经网络 深度学习 PCMA Modulation identification CNN Deep learning
  • 相关文献

参考文献3

二级参考文献20

  • 1韩钢,李建东,李长乐,蔡雪莲.一种改进的基于累积量的MDPSK信号分类算法[J].电子学报,2004,32(10):1613-1616. 被引量:6
  • 2赵知劲,郎涛.基于最大似然比准则的MPSK信号分类方法[J].电路与系统学报,2006,11(2):54-57. 被引量:9
  • 3万坚,李明,朱中梁.卫星数字调制混合信号的自动识别[J].电讯技术,2007,47(1):71-74. 被引量:8
  • 4Mark Dankberg. Paired Carrier Muhiple Access(PCMA) for Satellite Communications[ C ]//Pacific Telecommunications Con- ference. 1998: 787-791.
  • 5Pedzisz, Maciej, Mansour. Automatic modulation recognition of MPSK signals using constellation rotation and its 4th order eumulant [ J]. Digital Signal Processing, 2005, 15 (3) : 295-304.
  • 6Chen Weidong Yang Shaoquan(School of Electronic Engineering, Xidian University, Xi’an 710071).RECURSIVE CLASSIFICATION OF MQAM SIGNALS BASED ON HIGHER ORDER CUMULANTS[J]. Journal of Electronics(China). 2002(03)
  • 7Weidong Chen,Shaoquan Yang.Recursive classification of MQAM signals based on higher order cumulants[J]. Journal of Electronics (China) . 2002 (3)
  • 8Le M C,Boiteau D M.Modulation Classification by Means of Different Orders Statistical Moments. Proceedings of MILCOM‘97 . 1997
  • 9C. M. Spooner.Classification of cochannel communication signals using cyclic cumulants. Proc. ASILOMAR 1995 .
  • 10MARK D.Paired carrier multiple access(PCMA)for satellite com-munication. Pacific Telecommunications Conference . 1998

共引文献10

同被引文献48

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部