期刊文献+

基于多分辨率卷积神经网络的火焰检测 被引量:5

Fire Detection Based on Multi-resolution Convolution Neural Network
下载PDF
导出
摘要 采用一种基于多分辨率卷积神经网络的火焰检测算法对真实场景中的火焰目标进行检测.该算法以BN_Inception网络为基础架构,采用不同分辨率的神经网络互补学习复杂场景中火焰的多尺度视觉特征,同时该算法重点关注检测目标场景的背景环境、局部目标和整体布局等特征.使用该算法在构造的涵盖大多数真实场景的火焰数据集上进行测试,实验结果表明,提出的算法能够取得更好的检测效果,并在实际场景中得到了有效验证. A fire detection algorithm based on multi-resolution convolutional neural network was proposed to achieve the objective of fire detection in real scenes. This algorithm leveraged the BN_Inception network as the basic network structure. Different coarse and fine resolution neural networks were used to learn the multi-scale visual features of the fire in complex scenes complementarily, while paying attention to the background environment, local targets and overall layout of the scene. The method was evaluated in fire dataset covers most real scenes. The experiment showed that the proposed method could achieve better detection results than other methods, which could be effectively applied in the real world.
作者 黄文锋 徐珊珊 孙燚 周兵 HUANG Wenfeng;XU Shanshan;SUN Yi;ZHOU Bing(Henan Provincial Institute of Scientific & Technical Information, Zhengzhou 450003, China;School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China)
出处 《郑州大学学报(工学版)》 CAS 北大核心 2019年第5期79-83,共5页 Journal of Zhengzhou University(Engineering Science)
基金 国家自然科学基金资助项目(61872324) 河南省科技攻关资助项目(182102210072)
关键词 多分辨率卷积神经网络 火焰检测 深度学习 弱监督定位 multi-resolution convolutional neural network fire detection deep learning weak supervised learning
  • 相关文献

参考文献8

二级参考文献84

  • 1张进华,庄健,杜海峰,王孙安.一种基于视频多特征融合的火焰识别算法[J].西安交通大学学报,2006,40(7):811-814. 被引量:38
  • 2周军盈,杜啸晓.图像识别技术在火灾探测中的应用[J].消防科学与技术,2007,26(4):417-420. 被引量:14
  • 3安志伟 袁宏永 屈玉贵.数据采集在火焰闪烁频率的测量研究及分析中的应用.火灾科学,2000,9(2):43-47.
  • 4Celik T, Demirel H, Ozkaramanli H, et al. Fire detection using statistical color model in video sequences [ J ]. Fire Safety Jour- nal, 2007(18) : 176-185.
  • 5Celik T, Demirel H. Fire detection in video sequences using a generic color model [ J ]. Fire Safety Journal, 2009, 44 ( 2 ) : 147-158.
  • 6Homg W B, Peng J W, Chen C Y. A new image-based real-time flame detection method using color analysis [ C ]//Proceedings of the 2005.IEEE International Conference on Networking, Sensing and Control. Taipei, Taiwan, China: Tamkang Univ., 2005: 100-105.
  • 7Liu C B, Ahuja N. Vision based fire detection [ C]//Procee- dings of the 17th Intemational Conference on Pattern Recogni- tion. Urbana, IL, USA: Illinois Univ., 2004: 134-137.
  • 8Toreyin B U, Dedeoglu Y, Gudukbay U, et al. Computer vision based method for real-time fire and flame detection [ J ]. Pattern Recognition Letter, 2006, 27( 1 ) : 49-58.
  • 9Choi H O, Min 1 K, Oh E S, et al. A study on the algorithm for fire recognition for automatic forest fire detection [ C ]//Procee- dings of IEEE International Conference on Control Automation and Systems. Yongin, South Korea: Hyundai Heavy Ind., 2010 : 2086-2089.
  • 10Jenifer P. Effective visual fire detection in video sequences using probabilistic approach [ C ]//Proceedings of IEEE International Conference on Emerging Trends in Electrical and Computer Tech- nology. Tirnnelveli, India: IEEE Press, 2011: 870-875.

共引文献67

同被引文献21

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部