期刊文献+

铝掺杂LiNi0.8Co0.08Mn0.12O2梯度正极材料的制备及电化学性能 被引量:3

Preparation and Electrochemical Properties of Al-doped LiNi0.8Co0.08Mn0.12O2 Concentration Gradient Cathode Material
下载PDF
导出
摘要 采用共沉淀法制备了梯度核壳前驱体Ni0.8Co0.08Mn0.12(OH)2,并通过混锂煅烧合成了LiNi0.8Co0.08Mn0.12O2梯度正极材料。分别使用干混法和沉淀法对梯度正极材料进行了Al的掺杂改性。XRD及电解液浸泡实验表明,Al掺杂可以稳定梯度正极材料的层状结构并降低阳离子混排度,抑制正极材料在电解液中的溶解,从而提高材料的电化学性能。经沉淀法掺杂后正极材料在25℃下1 C循环100次容量保持率由92.5%提高到94.5%,55℃下1 C循环50次容量保持率由91.3%提高到95.8%。 Concentration gradient core-shell precursor Ni0.8Co0.08Mn0.12(OH)2 was prepared by co-precipitation,and then concentration gradient cathode material LiNi0.8Co0.08Mn0.12O2 was synthesized by calcining with lithium hydroxide.The doping of aluminum was carried out by dry mixing and precipitation,respectively.The results of XRD and electrolyte immersion test indicate that aluminum doping can stabilize the layered structure of concentration gradient cathode materials,reduce the degree of cationic mixing,and also inhibit the dissolution of cathode materials in electrolyte.Therefore,the electrochemical properties of materials can be improved.After the concentration gradient cathode material is doped by precipitation,its capacity maintaining rate of 100 cycles at 25 ℃ under 1 C increases from 92.5% to 94.5%,and its capacity maintaining rate of 50 cycles at 55 ℃ under 1 C increases from 91.3% to 95.8%.
作者 张勇杰 李建玲 夏保佳 张建 牛棒棒 ZHANG Yong-jie;LI Jian-ling;XIA Bao-jia;ZHANG Jian;NIU Bang-bang(School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing,Beijing 100083,China)
出处 《稀有金属与硬质合金》 CAS CSCD 北大核心 2019年第5期49-54,63,共7页 Rare Metals and Cemented Carbides
基金 国家重点研发计划(2016YFB0100500)
关键词 三元材料 梯度材料 铝掺杂 电化学性能 ternary material concentration gradient material Al doping electrochemical property
  • 相关文献

参考文献1

二级参考文献9

  • 1Keke Chang,Bengt Hallstedt,Denis Music,Julian Fischer,Carlos Ziebert,Sven Ulrich,Hans J. Seifert.Thermodynamic description of the layered O3 and O2 structural LiCoO 2 –CoO 2 pseudo-binary systems[J].Calphad.2013
  • 2Aiswarya Bhaskar,Natalia N. Bramnik,Dmytro M. Trots,Hartmut Fuess,Helmut Ehrenberg.In situ synchrotron diffraction study of charge–discharge mechanism of sol–gel synthesized Li M 0.5 Mn 1.5 O 4 ( M[J].Journal of Power Sources.2012
  • 3Jinping Dong,Xiqian Yu,Yang Sun,Lei Liu,Xiaoqing Yang,Xuejie Huang.Triplite LiFeSO 4 F as cathode material for Li-ion batteries[J].Journal of Power Sources.2012
  • 4Yanliang Liang,Zhanliang Tao,Jun Chen.Organic Electrode Materials for Rechargeable Lithium Batteries[J].Adv Energy Mater.2012(7)
  • 5John Goodenough.Rechargeable batteries: challenges old and new[J].Journal of Solid State Electrochemistry.2012(6)
  • 6Liping Wang,Hong Li,Xuejie Huang,Emmanuel Baudrin.A comparative study of Fd-3m and P4 3 32 “LiNi 0.5 Mn 1.5 O 4 ”[J].Solid State Ionics.2011(1)
  • 7M. Ati,B.C. Melot,J.-N. Chotard,G. Rousse,M. Reynaud,J.-M. Tarascon.Synthesis and electrochemical properties of pure LiFeSO 4 F in the triplite structure[J].Electrochemistry Communications.2011(11)
  • 8AtsuoYamada,NobuyukiIwane,YuHarada,Shin‐ichiNishimura,YukinoriKoyama,IsaoTanaka.Lithium Iron Borates as High‐Capacity Battery Electrodes[J].Adv Mater.2010(32)
  • 9高健,吕迎春,李泓.锂电池基础科学问题(Ⅲ)——相图与相变[J].储能科学与技术,2013,2(3):250-266. 被引量:5

共引文献42

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部