摘要
展开适合光储充电站通信网络和系统控制技术研究,基于G3_PLC技术研究适合光储充电站系统控制需求的通信网络,给出通信终端硬件实现,分析通信网络的高速传输和Mesh网络拓扑自适应组网的特性。同时结合通信网络架构,在对应的通信终端上,引入集中式MAS技术,给出基于其的控制策略,通过光储充电站系统内电力线实现不同Agent之间信息交互。通过搭建通信网路验证通信网络传输性能,得出在合适路由参数配置下通信速率可达60KBs,研究的集中式MAS控制策略利用光伏产生电能和电池充放电能可实现主动用能,达到光储充电站内电能流动平衡。
Expansion of research on communication network and system control technology suitable for photovoltaic storage and charging station. Based on G3_PLC technology, communication network suitable for the system control requirements of photovoltaic storage and charging station is studied. The hardware implementation of communication terminal is given. The characteristics of high-speed transmission of communication network and adaptive Mesh network topology are analyzed. At the same time, combined with the communication network architecture, the centralized MAS technology is introduced into the corresponding communication terminals, and the control strategy based on it is given. The information exchange between different agents is realized through the power line in the photovoltaic storage and charging station system. By building a communication network to verify the transmission performance of the communication network, it is concluded that the communication rate can reach 60 KBs under the appropriate routing parameters. Photovoltaic power generation, battery charging and discharging energy are the basis of active energy utilization technology. The centralized MAS control strategy based on this research can achieve the balance of power flow in photovoltaic storage and charging station.
作者
李林
曹军
陶维青
Li Lin;Cao Jun;Tao Weiqing(School of Electric Engineering and Automation,Hefei University of Technology,Hefei 230009,China;CSG Science&Technology CO.,Ltd,Hefei 230080,China)
出处
《电子测量与仪器学报》
CSCD
北大核心
2019年第9期25-32,共8页
Journal of Electronic Measurement and Instrumentation
基金
安徽省科技攻关重点项目(1704a0902004)资助
关键词
光储充电站
通信网络
G3_PLC
通信终端
集中式MAS
photovoltaic storage and charging station
communication network
G3_PLC
communication terminal
centralized MAS