期刊文献+

超超临界火电机组用P92钢管硬度异常原因分析 被引量:2

Cause analysis for abnormal hardness of P92 steel pipe used in ultra-supercritical thermal power unit
原文传递
导出
摘要 对用于某超超临界火电机组改造项目的硬度出现异常的P92钢管进行了实验室取样分析。结果表明:钢管生产厂家对P92钢管端部进行高温加热矫正处理且未采取回火处理是导致该P92钢管组织和硬度出现异常的主要原因,其所采用的高温加热矫正温度应为950~1050℃。高温加热矫正处理使材料中的碳化物出现了回溶,合金元素重新固溶到基体中,使得固溶强化作用加强,导致硬度显著增加;在缓冷至室温过程中,由于相变过程中产生较大的内应力,导致组织发生动态再结晶,但未形成明显的板条状回火马氏体亚结构,使得晶内形核位置较少,碳化物等第二相只能在再结晶晶界处沿晶析出,最终得到正火马氏体组织。 A P92 steel tube with abnormal hardness,which was used in the transformation project of an ultra-supercritical thermal power unit,was sampled and analyzed in laboratory.The results show that the end of the P92 steel pipe was high temperature heating correction treated at 950-1050℃not followed by a necessary tempering treatment by the steel pipe manufacturer,which is the main cause of the abnormal microstructure and hardness of the P92 steel tube.During the heating treatment at high temperature,the carbides in the steel and the alloying elements are redissolved into the matrix,which enhances the effect of solid solution strengthening and leads to a significant increase in hardness.Then during slow cooling to room temperature,significant internal stress is formed in the phase transformation process,which results in dynamic recrystallization of the microstructure.But there is no tempered martensite with obvious lath substructure formation,thus the nucleation sites inside grains are less,the secondary phase such as carbides can only precipitate along the grain boundary,and normalization martensite microstructure is finally obtained.
作者 王鲁 陈卓婷 白佳 Wang Lu;Chen Zhuoting;Bai Jia(Huadian Electric Power Research Institute Co.,Ltd.,Hangzhou Zhejiang310030,China)
出处 《金属热处理》 CAS CSCD 北大核心 2019年第10期192-196,共5页 Heat Treatment of Metals
关键词 P92钢管 硬度异常 正火处理 P92 steel pipes abnormal hardness normalizing treatment
  • 相关文献

参考文献4

二级参考文献17

  • 1丛相州,徐广信,魏骁,安锦平,彭先宽,惠娜.超超临界机组P92钢管件的国产化研究[J].中国电力,2007,40(7):17-20. 被引量:15
  • 2Fujio Abe. Precipitate Design for Creep Strengthening of 9 Cr Tempered Martensitie Steel for Ultra Supercritical Power Plants [J]. Science and Technology of Advanced Materials, 2008, 9(1): 1.
  • 3Hald J. Microstructure and Long-Term Creep Properties of 9-- 12M Cr Steels [J]. International Journal of Pressure Vessels and Piping, 2008, 85(6): 30.
  • 4Maruyama K, Sawada K, Koike J. Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel [J]. ISIJ Inter, 2001, 41(6): 641.
  • 5Sellars C M, Tegart W J M. On the Mechanism of Hot De- formation [J]. Acta Metallurgical, 1966, 14(9): 1136.
  • 6Jonas J J , Sellars C M, Tegart W J M. Strength and StructureUnder Hot-Working Conditions [J]. Metal Reviews, 1969, 130(14): 1.
  • 7Sellars C M Tegart W J M. Hot Workability [J]. lnternation al Metallurgical Reviews, 1972, 17(158): 1.
  • 8Zener C, Hollomon J H. Effect of Strain Rate Upon the Plastic of Steel [J]. J ApplPhys, 1944, 15(1): 22.
  • 9WANG Bao zhong, FU Wan tang, LI] Zhi qing, et al. Study on Hot Deformation Behavior of 12Cr Ultra-Super-Critical Rotor Steel[J]. Material Science and Engineering, 2008, 87A (7): 108.
  • 10Carsi M, Allende R, Pefalba F, et al. Simulation of the Form ing Behaviour of a Boron Modified P91 Ferritic Steel [J]. Steel Reseach Int, 2004, 75(1).- 26.

共引文献21

同被引文献48

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部