期刊文献+

基于深度学习的SAR图像目标检测实验 被引量:2

Experimental Research on SAR Images Target Detection Based on Deep Learning
下载PDF
导出
摘要 针对目前SAR图像目标检测算法只能进行单一目标检测和检测精度不高的问题,对深度学习目标检测框架在SAR图像目标检测的应用进行了实验研究,并结合SAR图像特点进行了优化。比较了基于区域建议的Faster-RCNN和无需区域建议的SSD目标检测框架在SAR图像上的目标检测精度和速度,分析优缺点;研究了预训练模型对SAR图像目标检测精度的影响;最后通过零均值规整化提高收敛速度和检测精度。实验结果表明优化后的目标检测框架,实现了SAR图像多目标识别并提高了检测精度,可以有效地应用于SAR图像多目标检测。 Aiming at the problem that the target detection algorithm of Synthetic Aperture Radar (SAR) can only detect a single target with low accuracy, Faster -RCNN and SSD target detection framework in the SAR image target detection is studied, and the performance is improved according to the characteristics of the SAR images. First, the accuracy and speed of Faster-RCNN and SSD in the target detection of synthetic aperture radar are compared and analyzed. Then, the pre-training model on the optical image is discarded to further improve the detection accuracy. Finally, the convergence rate and accuracy of the framework are improved by subtracting the mean value. The experimental results show that the proposed target detection framework based on deep learning achieved multi -target recognition of synthetic aperture radar and improved the detection accuracy. It is an effective method for multi-target detection of synthetic aperture radar images.
作者 林志龙 王长龙 胡永江 LIN Zhi-long;WANG Chang-long;HU Yong-jiang(Department of Unmanned Aerial Vehicle,Army Engineering University,Shijiazhuang 050003,China)
出处 《火力与指挥控制》 CSCD 北大核心 2019年第10期131-135,共5页 Fire Control & Command Control
基金 国家自然科学基金资助项目(51307183)
关键词 合成孔径雷达 目标检测 深度学习 Faster-RCNN SSD Synthetic Aperture Radar (SAR) target detection deep learning Faster-RCNN SSD
  • 相关文献

参考文献6

二级参考文献43

  • 1宦若虹,杨汝良.一种基于特征分类辨识的SAR图像目标检测方法[J].测绘学报,2009,38(4):324-329. 被引量:7
  • 2张翠,邹涛,王正志.一种高分辨率SAR图像快速目标检测算法[J].遥感学报,2005,9(1):45-49. 被引量:7
  • 3钟雪莲,王长林,周平,张新征.SAR图像中目标的自动检测与辨别[J].中国图象图形学报,2005,10(6):688-697. 被引量:8
  • 4侯俊,苗壮,潘泉.一种基于加权DSmT的序列图像目标识别方法[J].火力与指挥控制,2006,31(7):53-56. 被引量:7
  • 5焦李成,张向荣,侯彪,等.智能SAR图像处理与解译[M].北京:科学出版社,2008.
  • 6Novak L M, Halversen S D, Owirka G J, et al. Effects of polarization and resolution on SAR ATR [ J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33 ( 1 ) : 102 - 116.
  • 7Banerjee A, Burlina P, Chellapa R. Adaptive target detection in foliage-penetrating SAR images using Alpha-Sable models [ J ]. IEEE Transactions on Image Processing, 1999, 8 (12) : 1823 - 1831.
  • 8Maurizio D B, Carmela G. CFAR detection of extended objects in high-resolution SAR images [ J ]. IEEE Transactions Geoscience and Remote Sensing, 2005, 43 (4) :833 - 843.
  • 9Gao G, Kuang G Y, Zhang Q, et al. Fast detecting and locating groups of targets in high-resolution SAR images [ J ]. Pattern Recognition, 2007, 40 : 1378 - 1384.
  • 10Mahalanobis A, Ortiz L A, Vijaya Kumar B V K. Performance of the MACH filter and DCCF algorithms on the 10-class public release MSTAR data set[ C]. SPIE, Orlando, USA, April 285 - 291, 1999.

共引文献78

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部