期刊文献+

包含临界Sobolev-Hardy指数的奇异椭圆方程的Neumann问题 被引量:1

Neumann Problems of Singular Elliptic Equations Envolving Critical Sobolev-Hardy Exponents
下载PDF
导出
摘要 在0∈■Ω的情况下,解决了一类包含临界 Sobolev-Hardy 指数的奇异椭圆方程解的存在性,它与0∈Ω是不同的.根据笔者已证的一个广义存在性定理,得到了这类奇异椭圆方程的一个正解的存在性结论. The existence of positive solution for singular elliptic equations is studied, including Hardy Sobolev critical exponent in the condition of 0∈■Ω. It is different from 0∈Ω. According to the general existence theorem proved by the author, obtain the existence of positive solutions for singular elliptic equations.
作者 公艳 GONG Yan(College of Enformation Science and Eengineering/Shandong Agricultural University, Tai’an 271018, China)
出处 《山东农业大学学报(自然科学版)》 北大核心 2019年第5期913-917,共5页 Journal of Shandong Agricultural University:Natural Science Edition
关键词 Sobolev-Hardy 指数 椭圆方程 NEUMANN 问题 Singularity index elliptic equation Neumann problem
  • 相关文献

参考文献2

二级参考文献7

  • 1王征平,阮立志.含有Sobolev-Hardy临界指标的奇异椭圆方程无穷多解的存在性[J].应用数学,2004,17(4):639-648. 被引量:5
  • 2韩丕功.NEUMANN PROBLEMS OF A CLASS OF ELLIPTIC EQUATIONS WITH DOUBLY CRITICAL SOBOLEV EXPONENTS[J].Acta Mathematica Scientia,2004,24(4):633-638. 被引量:3
  • 3COMTE M, KNAAP M. Existence of Solutions of Elliptic Involving Critical Sobolev Exponents with Neumann Boundary Conditions in General Domains [J]. Differential Integral Equations, 1991 (4) : 1 133- 1 146.
  • 4CAO D, NOUSSAIR E S. The Effect of Geometry of the Domain Boundary in an Elliptic Neumann Problem [J]. Adv Differential Equations, 2001,6 (8):931 - 958.
  • 5CHERRIER P. Meilleures Constants Dans les in Egalites Relatives Aux Espaces de Sobolev[J]. Bull. Sci. Math. 2^e Serie, 1984,108:225- 262.
  • 6PIEROTTI D,TERRACINI S. On a Neumann Problem with Critical Exponent and Critical Nonlinearity on the Boundary [J]. Comm. Partial Differential Equations, 1995,20:1 155- 1 187.
  • 7COMTE M, KNAAP M C. Solutions of Elliptic Equations Involving Critical Sobolev Exponents with Neumann Bounda ry Conditions [J]. Manuscripta Math. , 1990,69 :43 - 70.

共引文献8

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部