摘要
该文研究了具有迅速振荡Neumann边值齐次化问题解的W1,p收敛率.此类问题在齐次化的高阶逼近理论中有着很重要的作用,其往往被用来描述边界分层想象.该文主要用到了解的积分表示、振荡积分估计以及周期函数Fourier展开等核心思想和技术.
In this paper,we shall strengthen our results on the W1,p convergence rates for homogenization problems for solutions of partial differential equations with rapidly oscillating Neumann boundary data.Such a problem raised due to its importance for higher order approximation in homogenization theory,which gives rise to the so-called boundary layer phenomenon.Our techniques are based on integral representation of the solutions as well as analysis of oscillatory integrals,in conjunction with Fourier expansion of the oscillating periodic function.
作者
王娟
赵杰
Wang Juan;Zhao Jie(College of Science,Zhongyuan University of Technology,Zhengzhou 451191)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2019年第5期1115-1124,共10页
Acta Mathematica Scientia
基金
国家自然科学基金(11626239)
河南省教育厅(18A110037)
国家留学基金委(201708410483)~~
关键词
齐次化
收敛率
振荡
Neumann函数
Homogenization
Convergence rates
Oscillating
Neumann functions