期刊文献+

基于关联规则的数据挖掘Apriori算法的两种优化分析 被引量:2

Analysis of Two Optimization Strategies for Apriori Algorithm of Data Mining Algorithm Based on Association Rules
下载PDF
导出
摘要 关联规则的数据挖掘算法——Apriori算法,其优化的核心在于如何在找出事务数据库中所有的频繁数据项集方面.论文以关联规则挖掘算法中的经典Apriori算法为基础,从删除无效连接,以减少冗余的连接为前提条件,进而实现减少剪枝步中的判断量提出了Apriori—A算法;以候选事务数据库替代原数据库D,大幅减少扫描次数为前提,提出了Apriori—B算法.结合特定实例经对比分析和实验验证,改进后的算法在效率方面优于经典算法. Data mining algorithm for association rules -Apriori algorithm optimization core lies in how to find all the frequent data sets in the transaction database. Based on the classic Apriori algorithm in association rule mining algorithm, this paper proposes Apriori-A algorithm from deleting invalid connections to reducing redundant connections as the premise condition, and then realizing the reduction of judgment quantity in pruning step;based on the premise that candidate transaction database replaces the original database D and significantly reduces the scanning times, Apriori-B algorithm is proposed. The improved algorithm is superior to the classical Apriori algorithm in terms of efficiency through comparative analysis and experimental verification with specific examples.
作者 张超 ZHANG Chao(Department of Electronics and Information Engineering,Bozhou University,Bozhou 236800,Anhui,China)
出处 《韶关学院学报》 2019年第9期16-20,共5页 Journal of Shaoguan University
基金 安徽省高校优秀青年人才支持计划项目(gxyq2017109) 安徽省计算机应用技术专业综合改革试点(省级)(2015zy078) 关联规则算法的优化分析及在教学评价中应用研究(BZSZKYXM201308)
关键词 关联规则 数据挖掘 APRIORI算法 优化分析 association rules data mining Apriori algorithm optimization analysis
  • 相关文献

参考文献3

二级参考文献25

  • 1刘殷雷,刘玉葆,陈程.不确定性数据流上频繁项集挖掘的有效算法[J].计算机研究与发展,2011,48(S3):1-7. 被引量:14
  • 2彭慧伶,刘发升.关联规则挖掘与分类规则挖掘的比较研究[J].计算机与现代化,2006(7):56-58. 被引量:6
  • 3刘雨露.数据挖掘在高校学生管理决策中的应用模式分析[J].成都信息工程学院学报,2006,21(3):373-377. 被引量:12
  • 4王伟平,李建中,张冬冬,郭龙江.一种有效的挖掘数据流近似频繁项算法[J].软件学报,2007,18(4):884-892. 被引量:33
  • 5陈晓云,胡运发.N个最频繁项集挖掘算法[J].模式识别与人工智能,2007,20(4):512-518. 被引量:6
  • 6Low Y,Bickson D,Gonzalez J,et al.Distributed GraphLab:a framework for machine learning and data mining in the cloud[J].Proceedings of the VLDB Endowment,2012,5(8):716-727.
  • 7Alcal-Fdez J,Fernndez A,Luengo J,et al.KEEL data-mining software tool:data set repository,integration of algorithms and experimental analysis framework[J].Journal of Multiple-Valued Logic & Soft Computing,2011,12(17):204-209.
  • 8García S,Fernndez A,Luengo J,et al.Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining:experimental analysis of power[J].Information Sciences,2010,180(10):2044-2064.
  • 9Peng Yi,Zhang Yong,Tang Yu,et al.An incident information management framework based on data integration,data mining,and multi-criteria decision making[J].Decision Support Systems,2011,51(2):316-327.
  • 10Ngai E W T,Hu Yong,Wong Y H,et al.The application of data mining techniques in financial fraud detection:a classification framework and an academic review of literature[J].Decision Support Systems,2011,50(3):559-569.

共引文献64

同被引文献27

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部