摘要
针对布谷鸟算法在解决QoS组播路由问题收敛速度慢,特别是接近最优解时,算法搜索效率低的问题,引入量子粒子群算法用于布谷鸟算法的位置寻优过程。仿真实验结果表明,经过改进的布谷鸟算法具有良好的运行速度和收敛性,能有效解决QoS组播路由问题,对于求解QoS多目标路由组播问题具有较好的效果。
In view of the problem that the cuckoo algorithm solves the problem that the QoS multicast routing problem is slow, especially near the optimal solution, the algorithm has low search efficiency.The quantum particle swarm optimization algorithm is introduced to the location optimization process of the cuckoo algorithm. The simulation results show that the improved cuckoo algorithm has good running speed and convergence, and can effectively solve the QoS multicast routing problem. It has a good effect on solving QoS multi- target routing multicast problem.
作者
符保龙
Fu Baolong(Liuzhou Vocational &Technical College, Liuzhou Guangxi 545006,China)
出处
《柳州职业技术学院学报》
2019年第5期113-116,共4页
Journal of Liuzhou Vocational & Technical College
关键词
QoS
量子粒子群
布谷鸟算法
组播路由
QoS
quantum particle swarm optimization
cuckoo algorithm
multicast routing