期刊文献+

A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect

A well-posed Euler-Bernoulli beam model incorporating nonlocality and surface energy effect
下载PDF
导出
摘要 This study shows that it is possible to develop a well-posed size-dependent model by considering the effect of both nonlocality and surface energy,and the model can provide another effective way of nanomechanics for nanostructures.For a practical but simple problem (an Euler-Bernoulli beam model under bending),the ill-posed issue of the pure nonlocal integral elasticity can be overcome.Therefore,a well-posed governing equation can be developed for the Euler-Bernoulli beams when considering both the pure nonlocal integral elasticity and surface elasticity.Moreover,closed-form solutions are found for the deflections of clamped-clamped (C-C),simply-supported (S-S) and cantilever (C-F) nano-/micro-beams.The effective elastic moduli are obtained in terms of the closed-form solutions since the transfer of physical quantities in the transition region is an important problem for span-scale modeling methods.The nonlocal integral and surface elasticities are adopted to examine the size-dependence of the effective moduli and deflection of Ag beams. This study shows that it is possible to develop a well-posed size-dependent model by considering the effect of both nonlocality and surface energy, and the model can provide another effective way of nanomechanics for nanostructures. For a practical but simple problem(an Euler-Bernoulli beam model under bending), the ill-posed issue of the pure nonlocal integral elasticity can be overcome. Therefore, a well-posed governing equation can be developed for the Euler-Bernoulli beams when considering both the pure nonlocal integral elasticity and surface elasticity. Moreover, closed-form solutions are found for the deflections of clamped-clamped(C-C), simply-supported(S-S) and cantilever(C-F) nano-/micro-beams. The effective elastic moduli are obtained in terms of the closed-form solutions since the transfer of physical quantities in the transition region is an important problem for span-scale modeling methods. The nonlocal integral and surface elasticities are adopted to examine the size-dependence of the effective moduli and deflection of Ag beams.
作者 Xiaowu ZHU Li LI
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第11期1561-1588,共28页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.51605172) the Natural Science Foundation of Hubei Province of China(No.2016CFB191) the Fundamental Research Funds for the Central Universities(Nos.2722019JCG06 and 2015MS014)
关键词 NONLOCAL integral ELASTICITY BENDING SIZE-DEPENDENCE EFFECT surface ELASTICITY nonlocal integral elasticity bending size-dependence effect surface elasticity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部